已知椭圆:()过点(2,0),且椭圆C的离心率为.
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆于两点,且为线段中点,再过作直线.求直线是否恒过定点,若果是则求出该定点的坐标,不是请说明理由。
(1);(2)直线恒过定点.
解析试题分析:本题主要考查椭圆的标准方程以及几何性质、直线的标准方程、直线与椭圆的位置关系、韦达定理等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用点在椭圆上和离心率得到方程组,解出a和b的值,从而得到椭圆的标准方程;第二问,需要对直线MN的斜率是否存在进行讨论,(ⅰ)若存在点P在MN上,设出直线MN的方程,由于直线MN与椭圆相交,所以两方程联立,得到两根之和,结合中点坐标公式,得到直线MN的斜率,由于直线MN与直线垂直,从而得到直线的斜率,因为直线也过点P,写出直线的方程,经过整理,即可求出定点,(ⅱ)若直线MN的斜率不存在,则直线MN即为,而直线为x轴,经验证直线,也过上述定点,所以综上所述,有定点.
(1)因为点在椭圆上,所以, 所以, 1分
因为椭圆的离心率为,所以,即, 2分
解得, 所以椭圆的方程为. 4分
(2)设,,
①当直线的斜率存在时,设直线的方程为,,,
由得,
所以, 因为为中点,所以,即.
所以, 8分
因为直线,所以,所以直线的方程为,
即 ,显然直线恒过定点. 10分
②当直线的斜率不存在时,直线的方程为,此时直线为轴,也过点.
综上所述直线恒过定点. 12分
考点:椭圆的标准方程以及几何性质、直线的标准方程、直线与椭圆的位置关系、韦达定理.
科目:高中数学 来源: 题型:解答题
如图,函数f(x)=x+的定义域为(0,+∞).设点P是函数图象上任一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M,N.
(1)证明:|PM|·|PN|为定值;
(2)O为坐标原点,求四边形OMPN面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C1和抛物线C2的焦点均在轴上,C1的中心和C2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表中:
3 | -2 | 4 | ||
0 | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com