精英家教网 > 高中数学 > 题目详情

【题目】某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为

(Ⅰ)请将上述列联表补充完整;

(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)见解析(2)有99.9%的把握

【解析】试题分析:(1)根据人中随机抽取人抽到喜欢游泳的学生的概率为 ,可得喜爱游泳的学生,即可得到列联表;(2)利用公式求得 ,与邻界值比较,即可得到结论.

试题解析:(Ⅰ)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为,所以喜欢游泳的学生人数为人. 其中女生有20人,则男生有40人,列联表补充如下:

喜欢游泳

不喜欢游泳

合计

男生

40

10

50

女生

20

30

50

合计

60

40

100

(Ⅱ)因为

所以有99.9%的把握认为喜欢游泳与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,讨论函数的单调性;

(Ⅱ)当,且时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 “中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家。”这个论断被各种媒体反复引用。出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国传统文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备购进一定量的书籍丰富小区图书站,由于年龄段不同需看不同类型的书籍,为了合理配备资源,对小区内看书人员进行了年龄的调查,随机抽取了一天中名读书者进行调查,将他们的年龄分成6段:后得到如图所示的频率分布直方图.问:

(Ⅰ)求40名读书者中年龄分布在的人数;

(Ⅱ)求40名读书者年龄的众数和中位数的估计值;(用各组区间中点值作代表)

(Ⅲ)若从年龄在的读书者中任取2名,求这两名读书者中年龄在恰有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,试确定函数的单调区间;

(2)若,且对于任意 恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数是奇函数.

(1)求的值;

(2)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}前n项和为Sn=﹣n2+12n.
(1)求{an}的通项公式;
(2)求数列{|an|}的前10项和T10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,将函数图象向下平移个单位得到的图象,则

)求函数的最小正周期单调递增区间;

)求在区间上的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为直角坐标系的坐标原点,双曲线 上有一点),点轴上的射影恰好是双曲线的右焦点,过点作双曲线两条渐近线的平行线,与两条渐近线的交点分别为 ,若平行四边形的面积为1,则双曲线的标准方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,点在椭圆上.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)是否存在斜率为2的直线,使得当直线与椭圆有两个不同交点时,能在直线上找到一点,在椭圆上找到一点,满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案