精英家教网 > 高中数学 > 题目详情
4.若m、n为两条不重合的直线,α、β为两个不重合的平面,
①如果α∥β,m?α,那么m∥β;
②如果m∥β,m?α,α∩β=n,那么m∥n;
③如果m⊥α,β⊥α,那么m∥β;
④如果m⊥n,m⊥α,n∥β,那么α⊥β;
其中正确的命题是(  )
A.①②B.①③C.①④D.③④

分析 对4个命题分别进行判断,即可得出结论.

解答 解:①如果α∥β,m?α,那么m∥β,故正确;
②如果m∥β,m?α,α∩β=n,那么m∥n,故正确;
③如果m⊥α,β⊥α,那么m∥β,或m?β,故错误;
④如果m⊥n,m⊥α,n∥β,那么α,β关系不能确定,故错误;
故选:A.

点评 本题考查空间的线面位置关系,考查空间想象能力和逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.计算sin$\frac{π}{6}$+tan$\frac{π}{3}$的值为(  )
A.$\frac{3\sqrt{3}}{2}$B.$\frac{5\sqrt{3}}{6}$C.$\frac{1}{2}$+$\frac{\sqrt{3}}{3}$D.$\frac{1}{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC中,若c2-a2=b2-ab,则内角C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.数列{an}中,满足a1+a2+…+an=3n-1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{3}{4}(1-\frac{1}{{3}^{n}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设n为正整数,f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,计算得f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,观察上述结果,按照上面规律,可以推测f(1024)>6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列结论:
(1)函数f(x)=tanx有无数个零点;
(2)集合A={x|y=2x+1},集合 B={x|y=x2+x+1}则A∩B={(0,1),(1,3)};
(3)函数$f(x)=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|$的值域是[-1,1];
(4)函数$f(x)=2sin(2x+\frac{π}{3})$的图象的一个对称中心为$(\frac{π}{3},0)$;
(5)已知函数f(x)=2cosx,若存在实数x1,x2,使得对任意的实数x都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为2π.
其中结论正确的序号是(1)(4)(把你认为结论正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知P是函数y=x2图象上的一点,A(1,-1),则$\overrightarrow{OP}•\overrightarrow{OA}$的最大值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.三棱锥S-ABC的顶点都在同一球面上,且SA=AC=SB=BC=2$\sqrt{2}$,SC=4,则该球的体积为$\frac{32}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线方程为x2=2py,且过点(1,4),则抛物线的焦点坐标为(  )
A.(1,0)B.($\frac{1}{16}$,0)C.(0,$\frac{1}{16}$)D.(0,1)

查看答案和解析>>

同步练习册答案