精英家教网 > 高中数学 > 题目详情

【题目】给出条件:①;②;③;④;使得函数,对任意,都使成立的条件序号是()

A.①③B.②④C.③④D.②③

【答案】B

【解析】

根据奇(偶)函数的定义判断出函数是偶函数,再判断出函数的单调性,利用偶函数图象关于y轴对称,判断所给的四个条件是否符合条件.

∵函数f(﹣x)=sin2(﹣x+(﹣x2sin2x+x2fx),

∴函数fx)是偶函数

又∵ysinx上是增函数,yx2上是增函数,

∴函数fx)=sin2x+x2上是增函数,在上是减函数,

x1x2x1|x2|中的条件都不能保证fx1)<fx2)成立,

对于②④,当|x1||x2|时,都有x12x22保证fx1)<fx2)成立,

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.

(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;

(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体均垂直于平面

(1)证明:⊥平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根),称为的特征根.

(1)讨论函数的奇偶性,并说明理由;

(2)已知为给定实数,求的表达式;

(3)把函数的最大值记作,最小值记作,研究函数的单调性,令,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一列函数,设直线的交点为,点轴和直线上的射影分别为,记的面积为的面积为.

1)求的最小值,并指出此时的取值;

2)在中任取一个函数,求该函数在上是增函数或在上是减函数的概率;

3)是否存在正整数,使得成立,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园草坪上有一扇形小径(如图),扇形半径为,中心角为,甲由扇形中心出发沿以每秒2米的速度向快走,同时乙从出发,沿扇形弧以每秒米的速度向慢跑,记秒时甲、乙两人所在位置分别为,,通过计算,判断下列说法是否正确:

(1)当时,函数取最小值;

(2)函数在区间上是增函数;

(3)若最小,则

(4)上至少有两个零点;

其中正确的判断序号是______(把你认为正确的判断序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下列联表:

1)根据列联表,能否有99.9%的把握认为对手机游戏的兴趣程度与年龄有关?

2)若已经从40岁以下的被调查者中用分层抽样的方式抽取了5名,现从这5名被调查者中随机选取3名,求这3名被调查者中恰有1名对手机游戏无兴趣的概率.

附:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2-a-lnx,其中a ∈R.

(I)讨论f(x)的单调性

(II)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。

查看答案和解析>>

同步练习册答案