精英家教网 > 高中数学 > 题目详情

【题目】(导学号:05856301)已知函数f(x)=m(x-1)exx2(m∈R),其导函数为f′(x),若对任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,则实数m的取值范围为(  )

A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)

【答案】C

【解析】由题意得f(x)mexm(x1)exxmxexx

所以x2(m1)x>f(x)对任意的x<0恒成立等价于mxexx<x2(m1)x对任意的x<0恒成立

mexxm>0对任意的x<0恒成立.

g(x)mexxm(x<0)g(x)mex1

m1g(x)mex1ex1<0g(x)(0)上单调递减所以g(x)>g(0)0符合题意;

m>1g(x)(,-ln m)上单调递减(ln m,0)上单调递增所以g(x)ming(ln m)<g(0)0不合题意.

所以实数m的取值范围为(1]

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中的假命题是(  )

A. αβR,使sin(αβ)sinαsinβ

B. φR,函数f(x)sin(2xφ)都不是偶函数

C. x0R,使 (abcR且为常数)

D. a>0,函数f(x)ln2xlnxa有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,DAB=60°.

(1)求证:直线AM∥平面PNC;

(2)求二面角D﹣PC﹣N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示. 是等腰梯形, 米, 的延长线上, 为锐角). 圆都相切,且其半径长为米. 是垂直于的一个立柱,则当的值设计为多少时,立柱最矮?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某广场中间有一块边长为2百米的菱形状绿化区,其中是半径为1百米的扇形, 管理部门欲在该地从修建小路:在弧上选一点(异于两点),过点修建与平行的小路.问:点选择在何处时,才能使得修建的小路的总长最小?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856310)

已知函数f(x)=x+ln x(a∈R).

(Ⅰ)当a=2时, 求函数f(x)的单调区间;

(Ⅱ)若关于x的函数g(x)=f(x)+ln x+2e(e为自然对数的底数)有且只有一个零点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856323)已知在△ABC中,ABC所对的边分别为abcR为△ABC外接圆的半径,若a=1, sin2Bsin2C-sin2A=sin Asin Bsin C,则R的值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指企业的校园,地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,某共享单车企业为更好服务社会,随机调查了100人,统计了这100人每日平均骑行共享单车的时间(单位:分钟),由统计数据得到如下频率分布直方图,已知骑行时间在三组对应的人数依次成等差数列

(1)求频率分布直方图中的值.

(2)若将日平均骑行时间不少于80分钟的用户定义为“忠实用户”,将日平均骑行时间少于40分钟的用户为“潜力用户”,现从上述“忠实用户”与“潜力用户”的人中按分层抽样选出5人,再从这5人中任取3人,求恰好1人为“忠实用户”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极大值,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案