精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)
的左、右焦点分别为F1,F2,过F2作双曲线C的一条渐近线的垂线,垂足为H,若F2H的中点M在双曲线C上,则双曲线C的离心率为(  )
A、
2
B、
3
C、2
D、3
分析:设一渐近线方程为 y=
b
a
 x,则F2H的方程为 y-0=k(x-c),代入渐近线方程 求得H的坐标,有中点公式求得
中点M的坐标,再把点M的坐标代入双曲线求得离心率.
解答:解:由题意可知,一渐近线方程为 y=
b
a
 x,则F2H的方程为 y-0=k(x-c),代入渐近线方程 y=
b
a
 x 可得
H的坐标为 (
a2
c
ab
c
 ),故F2H的中点M (
c+
a2
c
2
ab
2c
 ),根据中点M在双曲线C上,
(
a2
c
+c)
2
4a2
-
a2b2
b2c2
=1,∴
c2
a2
=2,故
c
a
=
2

故选 A.
点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出F2H的中点M的坐标是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌三模)已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宁波模拟)已知双曲线
x2
a
-
y2
a2+a+1
=1
的离心率的范围是数集M,设p:“k∈M”; q:“函数f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域为R”.则P是Q成立的(  )

查看答案和解析>>

科目:高中数学 来源:宁波模拟 题型:单选题

已知双曲线
x2
a
-
y2
a2+a+1
=1
的离心率的范围是数集M,设p:“k∈M”; q:“函数f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域为R”.则P是Q成立的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是______.

查看答案和解析>>

同步练习册答案