精英家教网 > 高中数学 > 题目详情

【题目】选修:坐标系与参数方程选讲.

在平面直角坐标系中,曲线为参数,实数),曲线

为参数,实数). 在以为极点, 轴的正半轴为极轴的极坐标系中,射线交于两点,与交于两点. 当时, ;当时, .

(1)求的值; (2)求的最大值.

【答案】(1;(2

【解析】试题分析:(1)化为普通方程,再化为极坐标方程,从而求出的值;(2)根据的极坐标方程,用三角函数表示,根据化一公式,转化为三角函数的最值问题.

试题解析:解:(1的普通方程为: ,其极坐标方程为

由题可得当时, ,...................2

的普通方程为: ,其极坐标方程为

由题可得当时, ..................5

2)由可得的方程分别为

的最大值为

时取到...........................10分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数上单调递减,在上单调递增,求实数的值;

(2)是否存在实数,使得上单调递减,若存在,试求的取值范围;若不存在,请说明理由;

(3)若,当时不等式有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,以极点为坐标原点,极轴为的正半轴建立平面直角坐标系.

(1)求的参数方程;

(2)已知射线,将逆时针旋转得到,且交于两点, 交于两点,求取得最大值时点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+px+q与函数y=f(f(f(x)))有一个相同的零点,则f(0)与f(1)(
A.均为正值
B.均为负值
C.一正一负
D.至少有一个等于0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O:x2+y2=1和定点A(2,1),由O外一点P(a,b)向O引切线PQ,切点为Q,且满足|PQ|=|PA|.

(1)求实数a,b间满足的等量关系.

(2)求线段PQ长的最小值.

(3)若以P为圆心所作的P与O有公共点,试求半径取最小值时P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,求函数的极值点;

(2)若函数在区间上恒有,求实数的取值范围;

(3)已知,且,在(2)的条件下,证明数列是单调递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知四边形为矩形,为平行四边形,点在平面内的射影恰好为点的中点为的中点为,且.

(1)求证:平面平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|
(1)若函数y=f(x)+x在R上是增函数,求实数a的取值范围;
(2)若对任意x∈[1,2]时,函数f(x)的图像恒在y=1图像的下方,求实数a的取值范围;
(3)设a≥2时,求f(x)在区间[2,4]内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x 轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连结AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案