精英家教网 > 高中数学 > 题目详情
1.已知sin(α-$\frac{π}{3}$)=$\frac{3}{5}$,α∈[$\frac{5π}{6}$,$\frac{5π}{4}$],则cosα=$-\frac{4+3\sqrt{2}}{10}$.

分析 先根据α的范围求出α-$\frac{π}{3}$的范围,再由α=α-$\frac{π}{3}$+$\frac{π}{3}$运用两角差的余弦公式得到答案.

解答 解:∵α∈[$\frac{5π}{6}$,$\frac{5π}{4}$],
∴α-$\frac{π}{3}$∈$[\frac{π}{2},\frac{11π}{12}]$,
cosα=cos[(α-$\frac{π}{3}$)+$\frac{π}{3}$]=cos(α-$\frac{π}{3}$)cos$\frac{π}{3}$-sin(α-$\frac{π}{3}$)sin$\frac{π}{3}$
=$-\frac{4}{5}×\frac{1}{2}-\frac{3}{5}×\frac{\sqrt{3}}{2}$=$-\frac{4+3\sqrt{2}}{10}$.
故答案为:$-\frac{4+3\sqrt{2}}{10}$.

点评 本题主要考查两角差的正弦函数以及余弦函数公式的应用.这里注意凑角的重要性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=ax2-2x+2,对于任意x∈(1,4),都有f(x)>0,则实数a的取值范围是a$>\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x1,x2是方程x2+4[kx+(1-2k)]2=4的两根,求(x1-x22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.与定积分${∫}_{0}^{3π}$$\sqrt{1-cosx}$dx相等的是(  )
A.$\sqrt{2}$${∫}_{0}^{3π}$sin$\frac{x}{2}$dxB.$\sqrt{2}$${∫}_{0}^{3π}$|sin$\frac{x}{2}$|dxC.|$\sqrt{2}$${∫}_{0}^{3π}$sin$\frac{x}{2}$dx|D.以上结论都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A到B的函数为f1:x→y=2x+1,B到C的函数为f2:y→z=y2-1,则A到C的函数f是(  )
A.f:x→z=4x(x+1)B.f:x→z=2x2-1C.f:x→z=2-x2D.f:x→z=4x2+4x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设空间四边形ABCD,E,F,G,H分别是AC,BC,DB,DA的中点,若AB=12$\sqrt{2}$,CD=4$\sqrt{2}$,且四边形EFGH的面积为12$\sqrt{3}$,求AB和CD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知集合A={k|方程x2+(2k-1)x+k2=0至少有一个不大于1的实根},求集合B={k|k∈A且k∈Z}的所有子集;
(2)设集合P={x|$\frac{5{x}^{2}+10x+2}{3{x}^{2}+13x+4}$≥1},Q={x|x2-2x-a4+1≥0},且P⊆Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=-cos2x+sinx,(|x|≤$\frac{π}{4}$)的最大值和最小值以及使该函数取得最值时的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足3an+1+an=0,a2=-$\frac{4}{3}$(n≥1,n∈N),则通项an=$4×(-\frac{1}{3})^{n-1}$.

查看答案和解析>>

同步练习册答案