精英家教网 > 高中数学 > 题目详情

【题目】现有5名男生、2名女生站成一排照相,

(1)两女生要在两端,有多少种不同的站法?

(2)两名女生不相邻,有多少种不同的站法?

(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法?

【答案】(1);(2);(3).

【解析】试题分析:(1)分两步,两端的两个位置,女生任意排,有种排法,中间的五个位置男生任意排,有排法,利用分步计数乘法原理可得结果;(2)先将名男生全排列,利用插空法,把名女生插入到名形成的个空中的个即可;(3) 采用去杂法,在七个人的全排列中,去掉女生甲在左端的个,再去掉女生乙在右端的个,但女生甲在左端同时女生乙在右端的种排除了两次,要找回来一次.

试题解析:(1)两端的两个位置,女生任意排,中间的五个位置男生任意排, (种).

(2)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生;(种).

(3)采用去杂法,在七个人的全排列中,去掉女生甲在左端的个,再去掉女生乙在右端的个,但女生甲在左端同时女生乙在右端的种排除了两次,要找回来一次.  

(种).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx(sinx+cosx)﹣
(1)若0<α< , 且sinα= , 求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )

A. 6 B. 8 C. 12 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两同学5次综合测评的成绩如茎叶图所示.

9

8

8

3

3

7

2

1

0

9

9

老师在计算甲、乙两人平均分时,发现乙同学成绩的一个数字无法看清.若从{0,1,2,…,9}随机取一个数字代替,则乙的平均成绩超过甲的平均成绩的概率为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc∈(0+∞).

1)若a=6b=5c=4ABCBCCAAB的长,证明:cosAQ

2)若abc分别是ABCBCCAAB的长,若abcQ时,证明:cosAQ

3)若存在λ∈(-22)满足c2=a2+b2ab,证明:abc可以是一个三角形的三边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2+lnx.
(Ⅰ)当a=﹣1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1 , x2 , x3…xk , 使得f′(x1)+f′(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,函数.

(1)讨论的单调性;

(2)当时,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p(0<p<1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X,对乙项目每投资10万元,X取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X1X2分别表示对甲、乙两项目各投资10万元一年后的利润.

(1)求X1X2的概率分布和均值E(X1),E(X2);

(2)当E(X1)<E(X2)时,求p的取值范围.

查看答案和解析>>

同步练习册答案