【题目】已知椭圆的左、右焦点分别为,,四个顶点恰好构成了一个边长为且面积为的菱形.
(1)求椭圆的标准方程;
(2)已知直线,过右焦点F2,且它们的斜率乘积为,设,分别与椭圆交于点,和,,的中点为,的中点为,求面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知函数(,).
(1)当(e为自然对数的底数)时,
(i)若在上恰有两个不同的零点,求实数m的取值范围;
(ii)若(),求在上的最大值;
(2)当时,,,数列满足.求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左、右焦点分别为,,为椭圆C上一点.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点分别为,,过,分别作x轴的垂线,,椭圆C的一条切线与,交于M,N两点,求证:是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.
(1)求抛物线的方程及点的坐标;
(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图②.
(1)求证:AM∥平面BEC;
(2)求点D到平面BEC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱中,侧棱与底面垂直,且,,、分别是、的中点,点在线段上,且.
(1)求证:不论取何值,总有;
(2)当时,求平面与平面所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,离心率为,直线恒过的一个焦点.
(1)求的标准方程;
(2)设为坐标原点,四边形的顶点均在上,交于,且,若直线的倾斜角的余弦值为,求直线与轴交点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的图象经过点.
(1)求抛物线的方程和焦点坐标;
(2)直线交抛物线于,不同两点,且,位于轴两侧,过点,分别作抛物线的两条切线交于点,直线,与轴的交点分别记作,.记的面积为,面积为,面积为,试问是否为定值,若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com