精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,若关于x的方程[f(x)]3-a|f(x)|+2=0有两个不等实根,则实数a的取值范围是(  )
A.(0,1)B.(1,3)C.(-1,3)D.(3,∞)

分析 首先确定函数f(x)的值域,再换元分离出参数a,最后结合函数图象得出结果.

解答 解:先求函数y=$\frac{{2}^{x}-1}{{2}^{x}+1}$的值域,
分离2x=$\frac{1+y}{1-y}$>0,解得y∈(-1,1),
即f(x)的值域为(-1,1),且在R上单调递增,
令t=f(x)∈(-1,1),
原方程[f(x)]3-a|f(x)|+2=0分离参数a得,
a=g(t)=$\frac{t^3+2}{|t|}$=$\left\{\begin{array}{l}{t^2+\frac{2}{t},t∈(0,1)}\\{-t^2-\frac{2}{t},t∈(-1,0)}\end{array}\right.$,如右图(实线),
所以,要使原方程有两个实数根,
则直线y=a与函数g(t)=$\frac{t^3+2}{|t|}$的图象有两个交点,
由图可知,a∈(3,+∞),
故选:D.

点评 本题主要考查了方程根个数的确定,涉及函数的图象与性质的应用,运用了换元法,数形结合等解题思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)=3x,若实数x1,x2,…x2015满足x1+x2+…+x2015=3,则f(x1)f(x2)…f(x2015)的值=27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知关于x的不等式x2-mx-2n<0的解集为(-1,3)
(1)求不等式x2-x-m>0的解集;
(2)求不等式组$\left\{\begin{array}{l}{{x}^{2}-2nx+m≤0}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$所表示的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:a>b>0的必要条件是$\frac{1}{a}$<$\frac{1}{b}$;命题q:y=sinx不是周期函数,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∨qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若数列{an}满足:an+1=$\frac{1}{1{-a}_{n}}$,a8=2,则a1a2•…•a2015=(  )
A.-1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知方程sinθ•x2+cosθ•x-1=0有两个实数根m,n,那么过点M(m,m2)和N(n,n2)(m≠±n)的直线与圆O:x2+y2=1的位置关系是(  )
A.相交B.相切C.相离D.随θ的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.到坐标原点的距离为1的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC为非直角三角形,其内角A、B、C的对边分别为a、b、c.且有$\sqrt{3}sin\frac{C}{2}co{s}^{2}\frac{B}{2}-cos\frac{C}{2}co{s}^{2}\frac{B}{2}$-$\frac{\sqrt{3}}{2}sin\frac{C}{2}+\frac{1}{2}cos\frac{C}{2}$=0.
(])求角C;
(2)若c=3,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,PQ是过F2且垂直于双曲线实轴的一条弦,若∠PF1Q=60°,则双曲线有一条渐近线的倾斜角α的余弦值是(  )
A.$\sqrt{2}$-1B.$\sqrt{3}$-1C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案