精英家教网 > 高中数学 > 题目详情
A,B,C是表面积为48π的球面O(O为球心)上的三点,若AB=2,BC=4,∠ABC=60°,则三棱锥O-ABC的体积为
4
6
3
4
6
3
分析:先求球的半径,确定小圆中三角形ABC的特征,作出三棱锥O-ABC的高,然后解三角形求出三棱锥O-ABC的底面面积及三棱锥O-ABC的高,即可得到三棱锥O-ABC的体积.
解答:解:表面积为48π的球面,它的半径是R,则48π=4πR2,R=2
3

因为 AB=2,BC=4,∠ABC=60°,所以∠BAC=90°,BC为小圆的直径,
则平面OBC⊥平面ABC,D为小圆的圆心,
所以OD⊥平面ABC,OD就是三棱锥O-ABC的高,
OD=
(2
3
)
2
-22
=2
2

则三棱锥O-ABC的体积为V=
1
3
×
1
2
×AB×AC×OD=
1
3
×
1
2
×2×2
3
×2
2
=
4
6
3

故答案为:
4
6
3
点评:本题考查球的有关计算问题,棱柱、棱锥、棱台的体积,考查学生空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,A、B、C是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60°,O为球心,则直线OA与截面ABC所成的角是(  )
A、arcsin
3
6
B、arccos
3
6
C、arcsin
3
3
D、arccos
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知A,B,C是表面积为48π的球面上的三点,AB=2,BC=4,∠ABC=60°,O为球心,则二面角O-AB-C的大小为:(  )
A、
π
3
B、
π
4
C、arccos
3
3
D、arccos
33
11

查看答案和解析>>

科目:高中数学 来源: 题型:

A、B、C是表面积为64π的球面上三点,AB=2,BC=4,∠ABC=60°,O为球心,则直线OA与截面ABC所成角是(  )
A、30°B、45°C、60°D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B,C是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60°,O为球心,则直线OA与截面ABC所成的角是
arccos
3
3
arccos
3
3

查看答案和解析>>

同步练习册答案