精英家教网 > 高中数学 > 题目详情
已知椭圆C的两焦点分别为F1(-2
2
,0)、F2(2
2
,0),长轴长为6,
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度.
分析:(1)由F1(-2
2
,0)、F2(2
2
,0)
,长轴长为6,能得到椭圆方程.
(2)设A
x1y1
,B
x2y2
,由椭圆方程为
x2
9
+
y2
1
=1
,直线AB的方程为y=x+2得10x2+36x+27=0,由此能得到线段AB的长度.
解答:解:(1)由F1(-2
2
,0)、F2(2
2
,0)
,长轴长为6
得:c=2
2
,a=3
所以b=1
∴椭圆方程为
x2
9
+
y2
1
=1
…(5分)
(2)设A
x1y1
,B
x2y2
,由(1)可知椭圆方程为
x2
9
+
y2
1
=1
①,
∵直线AB的方程为y=x+2②…(7分)
把②代入①得化简并整理得10x2+36x+27=0
x1+x2=-
18
5
x1x2=
27
10
…(10分)
|AB|=
(1+12)(
182
52
-4×
27
10
)
=
6
3
5
…(12分)
点评:本题考查椭圆方程的求法和弦长的运算,解题时要注意椭圆性质的灵活运用和弦长公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给定椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”.
(1)若椭圆C过点(
5
,0)
,且焦距为4,求“伴随圆”的方程;
(2)如果直线x+y=3
2
与椭圆C的“伴随圆”有且只有一个交点,那么请你画出动点Q(a,b)轨迹的大致图形;
(3)已知椭圆C的两个焦点分别是F1(-
2
,0)、F2
2
,0),椭圆C上一动点M1满足|
M1F1
|+|
M1F
2
|=2
3
.设点P是椭圆C的“伴随圆”上的动点,过点P作直线l1、l2使得l1、l2与椭圆C都各只有一个交点,且l1、l2分别交其“伴随圆”于点M、N.当P为“伴随圆”与y轴正半轴的交点时,求l1与l2的方程,并求线段|
MN
|
的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”. 已知椭圆C的两个焦点分别是F1(-
2
,0)、F2(
2
,0)
,椭圆C上一动点M1满足|
M1F1
|+|
M1F
2
|=2
3

(Ⅰ)求椭圆C及其“伴随圆”的方程
(Ⅱ)试探究y轴上是否存在点P(0,m)(m<0),使得过点P作直线l与椭圆C只有一个交点,且l截椭圆C的“伴随圆”所得的弦长为2
2
.若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省高三3月月考数学试卷(解析版) 题型:解答题

(本小题满分15分)

给定椭圆C:,称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为,其短轴的一个端点到点的距离为

(1)求椭圆C和其“准圆”的方程;

(2)若点是椭圆C的“准圆”与轴正半轴的交点,是椭圆C上的两相异点,且轴,求的取值范围;

(3)在椭圆C的“准圆”上任取一点,过点作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南邵阳石齐学校高二第三次月考理科数学试卷(解析版) 题型:解答题

(本题满分13分)

已知椭圆C的两焦点分别为,长轴长为6,

⑴求椭圆C的标准方程;

⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。

 

查看答案和解析>>

科目:高中数学 来源:2013届云南省潞西市高二下学期期中文理数学试卷(解析版) 题型:解答题

(本题满分12分) 

已知椭圆C的两焦点分别为,长轴长为6。

 ⑴求椭圆C的标准方程;   ⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。

 

查看答案和解析>>

同步练习册答案