精英家教网 > 高中数学 > 题目详情
在平面四边形ABCD内,点E和F分别在AD和BC上,且
DE
EA
.
CF
=λ
FB
(λ∈R,λ≠-1),用λ,
DC
AB
表示
EF
=
 
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:如图所示,由
DE
EA
.
CF
=λ
FB
(λ∈R,λ≠-1),可得
DE
=
λ
1+λ
DA
CF
=
λ
1+λ
CB
.代入
EF
=
ED
+
DC
+
CF
整理化简即可得出.
解答: 解:如图所示,
DE
EA
.
CF
=λ
FB
(λ∈R,λ≠-1),
DE
=
λ
1+λ
DA
CF
=
λ
1+λ
CB

EF
=
ED
+
DC
+
CF

=
λ
1+λ
AD
+
DC
+
λ
1+λ
CB

=
λ
1+λ
(
CD
-
CA
+
AB
-
AC
)
+
DC

=
λ
1+λ
CD
+
λ
1+λ
AB
+
DC

=
1
1+λ
DC
+
λ
1+λ
AB

故答案为:
1
1+λ
DC
+
λ
1+λ
AB
点评:本题考查了向量的三角形法则、向量共线定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
5
2
sinAsinx+cos2x(x∈R),且满足cos(A+
π
4
)=-
2
10
,A∈(
π
4
π
2

(1)求sinA的值;
(2求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程ax2-x-1=0在区间(0,1)内恰有一个解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a b c∈R+,a+
2
b+
3
c=2
3
,记a2+b2+c2的最小值为m.
(Ⅰ)求实数rn;
(Ⅱ)若关于x的不等式|x-3|≥m和x2+px+q≥0的解集相同,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若两个分类变量x和y的列联表为:
y1y2合计
x1104555
x2203050
合计3075105
则x与y之间有关系的可能性为(  )
A、0.1%B、99.9%
C、97.5%D、0.25%

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax3+bx2+cx+d(a≠0).已知五个方程的相异实根个数如下表所述﹕
f(x)-20=01f(x)+10=01
f(x)-10=03f(x)+20=01
f(x)=03
α为关于f(x)的极大值﹐下列选项中正确的是(  )
A、0<α<10
B、10<α<20
C、-10<α<0
D、-20<α<-10

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量
a
b
中,|
a
|≠0,
b
=t
a
(t∈R).对于使命题“?t>1,|
c
-
b
|≥|
c
-
a
|”为真的非零向量
c
,给出下列命题:
①?t>1,(
c
-
a
)•( 
b
-
a
)≤0;    ②?t>1,( 
c
-
a
)•(
b
-
a
)>0;
③?t∈R,(
c
-
a
)•( 
c
-
b
)<0;   ④?t∈R,(
c
-
a
)•(
c
-
b
)<0.
则以上四个命题中的真命题是(  )
A、①④B、②③
C、①②④D、①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,将直线y=
x
2
与直线x=1及x轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V圆锥=
1
0
π(
x
2
2dx=
π
12
x3|
0
1
=
π
12

据此类推:将曲线y=x2与直线y=4所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:ρsin(θ-
π
4
)=4和圆C:ρ=2k•cos(θ+
π
4
)(k≠0),若直线l上的点到圆C上的点的最小距离等于2.
(1)求圆心C的直角坐标;
(2)求k值.

查看答案和解析>>

同步练习册答案