精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的离心率为,已知但在椭圆上.

(1)求椭圆的方程;

(2)过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点,使得成立?如果存在,求出的取值范围;如果不存在,请说明理由.

【答案】(1);(2)答案见解析.

【解析】试题分析:(1)由题得,结合,解得,可得椭圆的方程.

(2)联立方程组,整理得,设,则,把坐标化,可得,代入整理得,解得,可得解.

试题解析:(1)将代入,得

,得,结合,解得

故椭圆的方程为.

(2)设,联立方程组,整理得

,则

由于菱形的对角线垂直,故,

,即

由已知条件知

所以,所以

故存在满足题意的点,且的取值范围是

当直线的斜率不存在时,不合题意.

点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中[x]表示不超过x的最大整数.设n∈N* , 定义函数fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn1(x))(n≥2),则下列说法正确的有 ①y= 的定义域为
②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;

④若集合M={x|f12(x)=x,x∈[0,2]},
则M中至少含有8个元素.(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是___________

用一个平面截一个球,得到的截面是一个圆;

圆台的任意两条母线延长后一定交于一点;

有一个面为多边形,其余各面都是三角形的几何体叫做棱锥;

若棱锥的侧棱长与底面多边形的边长相等,则该棱锥不可能是正六棱锥;

用斜二测画法作出正三角形的直观图,则该直观图面积为原三角形面积的一半.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产的产品的直径均位于区间内(单位: ).若生产一件产品的直径位于区间内该厂可获利分别为10302010(单位:元),现从该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.

1的值,并估计该厂生产一件产品的平均利润;

2现用分层抽样法从直径位于区间内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间内的槪率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+21nx.
(1)求f(x)的单调区间.
(2)若f(x)在(0,1]上的最大值是﹣2,求a的值.
(3)记g(x)=f(x)+(a﹣1)lnx+1,当a≤﹣2时,若对任意x1 , x2∈(0,+∞),总有|g(x1)﹣g(x2)|≥k|x1﹣x2|成立,试求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年某学科能力测试共有12万考生参加,成绩采用15级分,测试成绩分布图如图,试估计成绩高于11级分的人数为 (  )

A. 8 000 B. 10 000 C. 20 000 D. 60 000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 函数g(x)=2﹣f(x),若函数y=f(x)﹣g(x)恰有4个零点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】m, n是两条不同的直线,是三个不同的平面, 给出下列四个命题:

m⊥α,n∥α,m⊥n;α∥β, β∥r, m⊥α,m⊥r;

m∥α,n∥α,m∥n;α⊥r, β⊥r,α∥β

其中正确命题的序号是 ( )

A. B. ②③ C. ③④ D. ①

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式an
(2)若a3 , a5分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

同步练习册答案