精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x2﹣1|+x2+kx,且定义域为(0,2).
(1)求关于x的方程f(x)=kx+3在(0,2)上的解;
(2)若关于x的方程f(x)=0在(0,2)上有两个的解x1 , x2 , 求k的取值范围.

【答案】
(1)解:∵f(x)=kx+3,∴|x2﹣1|+x2+kx=kx+3,即|x2﹣1|+x2=3.

若0<x≤1,则|x2﹣1|+x2=1﹣x2+x2=1,此时方程无解.

若1<x<2,则|x2﹣1|+x2=2x2﹣1,原方程等价于:x2=2,此时该方程的解为x=

综上可知:方程f(x)=kx+3在(0,2)上的解为x=


(2)解:当0<x≤1时,f(x)=0kx=﹣1,①,当1<x<2时,f(x)=02x2+kx﹣1=0,②

若k=0则①无解,②的解为 ,故k=0不合题意.

若k≠0,则①的解为

∵方程②的判别式△=k2+8>0,∴方程②有两个不相等的根,不妨设为x1,x2

,∴x1<0<x2

(i)若 ,即k≤﹣1,则1<x2<2,

设g(x)=2x2+kx﹣1,则 ,即

解得 ,又k≤﹣1,故

(ii) 若 时,即﹣1<k<0或k>0时,方程②在(1,2)须有两个不同解,与x1<0<x2矛盾,不合题意.

综上所述,


【解析】(1)对x的范围进行讨论去绝对值符号,再解方程;(2)对x的范围进行讨论去绝对值符号,得出两个方程,对两个方程的根的个数进行讨论,利用二次函数的性质得出不等式解出k的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1 , l2分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= ,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直. (Ⅰ)求a的值;
(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围;
(Ⅲ)求证:ln(4n+1)≤16 (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.

(1)y关于x的函数;

(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 分别是椭圆的左、右焦点, 是椭圆的顶点, 是直线与椭圆的另一个交点, .

(1)求椭圆的离心率;

(2)已知的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求证:OE∥平面PDC;
(Ⅲ)求面PAD与面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校按分层抽样的方法从高中三个年级抽取部分学生调查,从三个年级抽取人数的比例为如图所示的扇形面积比,已知高二年级共有学生1 200,并从中抽取了40.

(1)该校的总人数为多少?(2)三个年级分别抽取多少人?

(3)在各层抽样中可采取哪种抽样方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

1求选取的2组数据恰好是不相邻2天数据的概率;

2若选取的是12月1日12月5日的两组数据,请根据12月2日12月4日的数据,求出y关于x的线性回归方程=bx+a;

3若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(注:)

查看答案和解析>>

同步练习册答案