精英家教网 > 高中数学 > 题目详情

【题目】△ABC中,a,b,c分别是角A、B、C的对边,向量 =(2sinB,2﹣cos2B), =(2sin2 + ),﹣1)且
(1)求角B的大小;
(2)若a= ,b=1,求c的值.

【答案】
(1)解:由于 ,所以 =0,所以

即2sinB+2sin2B﹣2+1﹣2sinB2=0,

解得

由于0<B<π,所以


(2)解:由a>b,得到A>B,即B=

由余弦定理得:b2=a2+c2﹣2accosB,

代入得:1=3+c2﹣2 c 或1=3+c2﹣2 c(﹣ ),

即c2+3c+2=0(无解)或c2﹣3c+2=0,

解得c=1或c=2


【解析】(1)根据 得关于角B的三角函数的方程,解方程即可求出角B;(2)求出角B后,根据余弦定理可得一个关于c的一元二次方程,解这个方程求解c值.
【考点精析】根据题目的已知条件,利用两角和与差的正弦公式和余弦定理的定义的相关知识可以得到问题的答案,需要掌握两角和与差的正弦公式:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点,F是CE的中点.

(1)证明:BF∥平面ACD;
(2)求平面BCE与平面ACD所成锐二面角的大小;
(3)求点G到平面BCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处都取得极值.

(1)求的值及函数的单调区间;

(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足.

1)若的定义域为,且对定义域内所有都成立,求

2)若的定义域为时,求的值域;

3)若的定义域为,设函数,当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】始于2007年初的美国次贷危机,至2008年中期,已经演变为全球金融危机.受此影响,国际原油价格从20087月每桶最高的147美元开始大幅下跌,9月跌至每桶97美元.你能求出国际原油价格7月到9月之间平均每月下降的百分比吗?若按此计算,到什么时间跌至谷底(即每桶34美元)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)

(1)三名女生不能相邻,有多少种不同的站法?

(2)四名男生相邻有多少种不同的排法?

(3)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?

(4)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形, 交于点 底面,点中点, .

(1)求直线所成角的余弦值;

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件 ,目标函数z=ax+by(a>0,b>0)的最大值M,若M的取值范围是[1,2],则点M(a,b)所经过的区域面积=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

同步练习册答案