【题目】已知数列满足(,且),且,设,,数列满足.
(1)求证:数列是等比数列并求出数列的通项公式;
(2)求数列的前n项和;
(3)对于任意,,恒成立,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:
做不到 | 能做到 | |
高年级 | 45 | 10 |
低年级 | 30 | 15 |
则下列结论正确的是( )
附参照表:
0.10 | 0.025 | 0.01 | |
2.706 | 5.024 | 6.635 |
参考公式:,其中
A. 在犯错误的概率不超过的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”
B. 在犯错误的概率不超过的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”
C. 有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”
D. 有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图1所示茎叶图.
(1)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;
(2)如图2按照打分区间绘制的直方图中,求最高矩形的高;
(3)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B,C是圆O上不同的三点,线段CO与线段AB交于点D,若 =λ +μ (λ∈R,μ∈R),则λ+μ的取值范围是( )
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是( )
A. ①③B. ②④C. ①④D. ②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com