精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,且),且,设,数列满足.

1)求证:数列是等比数列并求出数列的通项公式;

2)求数列的前n项和

3)对于任意恒成立,求实数m的取值范围.

【答案】(1)见解析(2)(3) .

【解析】

1)将式子写为:得证,再通过等比数列公式得到的通项公式.

2)根据(1)得到进而得到数列通项公式,再利用错位相减法得到前n项和.

3)首先判断数列的单调性计算其最大值,转换为二次不等式恒成立,将 代入不等式,计算得到答案.

1)因为

所以

所以是等比数列,其中首项是,公比为

所以.

2

所以

由(1)知,,又

所以.

所以

所以两式相减得

.

所以.

3

,所以当时,

时,,即

所以当时,取最大值是.

只需

对于任意恒成立,即

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:

做不到

能做到

高年级

45

10

低年级

30

15

则下列结论正确的是( )

附参照表:

0.10

0.025

0.01

2.706

5.024

6.635

参考公式:,其中

A. 在犯错误的概率不超过的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”

B. 在犯错误的概率不超过的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”

C. 以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”

D. 以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>b>c>d>0,ad=bc.
(Ⅰ)证明:a+d>b+c;
(Ⅱ)比较aabbcddc与abbaccdd的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图1所示茎叶图.

(1)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;

(2)如图2按照打分区间绘制的直方图中,求最高矩形的高;

(3)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程序框图如图,当输入x为2016时,输出的y的值为(

A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A,B,C是圆O上不同的三点,线段CO与线段AB交于点D,若 (λ∈R,μ∈R),则λ+μ的取值范围是(
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是(

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

同步练习册答案