精英家教网 > 高中数学 > 题目详情

【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在 对应的小矩形的面积分别是,且.

(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在的人数;

(2)计算在五一活动中消费超过3000元的消费者的平均年龄;

(3)若按照分层抽样,从年龄在 的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在内的概率.

【答案】(1);(2)50;(3).

【解析】试题分析:(1)利用小矩形面积比就是频率比,和所有频率和为,可求得各组的频,再利用组的频率可估计该地区的人数;(2)由频率分布直方图求平均数可由各组的中间数与该组的频率乘积后再求和可得;(3)先由分层抽样得出抽取人在各组的分配情况,然后写出所有抽取两人的可能情况,找出满足条件的,利用古典概型可求得结果.

试题解析:(1)设区间的频率为x,则区间内的频率依次为,依题意

在五一活动中消费超过3000元且年龄在岁之间的人数为:

(人)

(2)依题意,所求的平均数为:

.

(3)若按分层抽样,年龄在分别抽取2人和5人,记年龄在的两

人为A,B,记年龄在的5人为1,2,3,4,5;随机抽取两人可能情况有:

(A,B),(A,1)(A,2),(A,3),(A,4),(A,5),(B,1),(B,2),(B,3),(B,4),(B,5),(1,2),(1,3),(1,4)(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共21种情况,

其中满足条件的有:(A,B),(A,1)(A,2),(A,3),(A,4),(A,5),(B,1),(B,2),(B,3),(B,4),(B,5)共11

种故所求概率为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的几何体为一简单组合体在底面平面

(1)求证:平面平面

(2)求该组合体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为

I)若点在圆的外部,求的取值范围

II)当时,是否存在斜率为的直线,使以被圆截得的弦为直径所作的圆过原点?若存在,求出的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】宜昌一中江南新校区拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米,设小圆弧所在圆的半径为米,圆心角(弧度).

(1)求关于的函数关系式;

(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米,设花坛的面积与装饰总费用之比为,求关于的函数关系式,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项为和Sn,点(n)在直线yx上.数列{bn}满足bn+2-2bn+1bn=0(nN*),且b3=11,前9项和为153.

(1)求数列{an},{bn}的通项公式;

(2)求数列的前项和

(3)设nN*fn)=问是否存在mN*,使得fm+15)=5fm)成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市组织500名志愿者参加敬老活动,为方便安排任务将所有志愿者按年龄(单位:岁)分组,得到的频率分布表如下.现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人担任联系人.

年龄(岁)

频率

第1组

0.1

第2组

0.1

第3组

0.4

第4组

0.3

第5组

0.1

(1)应分别在第1,2,3组中抽取志愿者多少人?

(2)从这6人中随机抽取2人担任本次活动的宣传员,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 ( )

A. 甲地:总体均值为3,中位数为4

B. 乙地:总体均值为1,总体方差大于0

C. 丙地:中位数为2,众数为3

D. 丁地:总体均值为2,总体方差为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是矩形,平面平面的中点,且.

I)求证: 平面

II)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的边长为1,如图所示:

1在正方形内任取一点求事件的概率;

2用芝麻颗粒将正方形均匀铺满,经清点,发现芝麻一共56粒,有44粒落在扇形请据此估计圆周率的近似值精确到0.001

查看答案和解析>>

同步练习册答案