精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,设圆x2+y2-4x=0的圆心为Q.

(1)求过点P(0,-4)且与圆Q相切的直线的方程;

(2)若过点p(0,-4)且斜率为k的直线与圆Q相交于不同的两点A,B,以OAOB为邻边做平行四边形OABC,问是否存在常数k,使得平行四边形OABC为矩形?请说明理由.

【答案】1)=.(2)存在常数,使平行四边形OABC得为矩形.

【解析】试题分析:(1)考虑直线斜率是否存在,当斜率存在时,设切线方程为: ,根据圆心到直线的距离等于半径求出,即可求得直线的方程;(2)联立,写出根与系数的关系,根据矩形的性质,利用向量可求出的值.

试题解析(1)由题意知,圆心Q坐标为(2,0)半径为2

当直线斜率不存在时直线方程为符合题意

当直线斜率存在时,设切线方程为:

∴由,解得

∴所求的切线方程为=.

(2)假设存在满足条件的实数,则设,

联立,

(或由(1)),

= =,

==

==,

又∵==,

∴要使平行四边形OABC为矩形==

∴存在常数使平行四边形OABC得为矩形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)设

①若,求函数的零点;

②若函数存在零点,求的取值范围.

(2)设,若对任意恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:y2=8ax(a>0),直线l倾斜角是45°且过抛物线C1的焦点,直线l被抛物线C1截得的线段长是16,双曲线C2 =1的一个焦点在抛物线C1的准线上,则直线l与y轴的交点P到双曲线C2的一条渐近线的距离是(
A.2
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足:对任意x,y∈R,都有f(x+y)=f(x)f(y)﹣f(x)﹣f(y)+2成立,且x>0时,f(x)>2,
(1)求f(0)的值,并证明:当x<0时,1<f(x)<2.
(2)判断f(x)的单调性并加以证明.
(3)若函数g(x)=|f(x)﹣k|在(﹣∞,0)上递减,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线x2=ay(a>0)的准线l与y轴交于点P,若l绕点P以每秒 弧度的角速度按逆时针方向旋转t秒钟后,恰与抛物线第一次相切,则t等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+bx2+cx+d图象如图,则函数 的单调递减区间为(

A.(﹣∞,﹣2)
B.[3,+∞)
C.[﹣2,3]
D.[

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+a.
(Ⅰ)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中a为实数.
(1)当 时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x≥ 时,若关于x的不等式f(x)≥0恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A24

1)设圆Nx轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点,且BC=OA,求直线l的方程;

3)设点Tt,o)满足:存在圆M上的两点PQ,使得,求实数t的取值范围。

查看答案和解析>>

同步练习册答案