【题目】在平面直角坐标系xOy中,设圆x2+y2-4x=0的圆心为Q.
(1)求过点P(0,-4)且与圆Q相切的直线的方程;
(2)若过点p(0,-4)且斜率为k的直线与圆Q相交于不同的两点A,B,以OA、OB为邻边做平行四边形OABC,问是否存在常数k,使得平行四边形OABC为矩形?请说明理由.
【答案】(1)=.(2)存在常数,使平行四边形OABC得为矩形.
【解析】试题分析:(1)考虑直线斜率是否存在,当斜率存在时,设切线方程为: ,根据圆心到直线的距离等于半径求出,即可求得直线的方程;(2)联立得,写出根与系数的关系,根据矩形的性质,利用向量可求出的值.
试题解析:(1)由题意知,圆心Q坐标为(2,0),半径为2
当直线斜率不存在时,直线方程为,符合题意
当直线斜率存在时,设切线方程为:
∴由,解得
∴所求的切线方程为=.
(2)假设存在满足条件的实数,则设,
联立得,
∵
∴ (或由(1)知),
∴且= =,
∵==
∴==,
又∵==,
∴要使平行四边形OABC为矩形,则==
∴
∴存在常数,使平行四边形OABC得为矩形.
科目:高中数学 来源: 题型:
【题目】已知抛物线C1:y2=8ax(a>0),直线l倾斜角是45°且过抛物线C1的焦点,直线l被抛物线C1截得的线段长是16,双曲线C2: ﹣ =1的一个焦点在抛物线C1的准线上,则直线l与y轴的交点P到双曲线C2的一条渐近线的距离是( )
A.2
B.
C.
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足:对任意x,y∈R,都有f(x+y)=f(x)f(y)﹣f(x)﹣f(y)+2成立,且x>0时,f(x)>2,
(1)求f(0)的值,并证明:当x<0时,1<f(x)<2.
(2)判断f(x)的单调性并加以证明.
(3)若函数g(x)=|f(x)﹣k|在(﹣∞,0)上递减,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线x2=ay(a>0)的准线l与y轴交于点P,若l绕点P以每秒 弧度的角速度按逆时针方向旋转t秒钟后,恰与抛物线第一次相切,则t等于( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+a.
(Ⅰ)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,其中a为实数.
(1)当 时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x≥ 时,若关于x的不等式f(x)≥0恒成立,试求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A(2,4)
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com