精英家教网 > 高中数学 > 题目详情
5.已知△ABC,角A,B,C的对边分别为a,b,c且a2-c2=b(a-b)且c=$\sqrt{6}$
(1)求角C;   
(2)求△ABC面积的最大值.

分析 (1)把已知的等式变形后,得到一个关系式,然后利用余弦定理表示出cosC,把变形后的关系式代入即可求出cosC的值,根据C的范围,利用特殊角的三角函数值即可得到C的度数;
(2)运用余弦定理可得c2=a2+b2-ab,运用基本不等式可得ab≤6,再由三角形的面积公式即可得到最大值.

解答 解:(1)因为a2-c2=b(a-b),即a2+b2-c2=ab,
则cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{ab}{2ab}$=$\frac{1}{2}$,又C∈(0°,180°),
所以∠C=60°.
(2)由余弦定理可得,c2=6=a2+b2-2abcosC=a2+b2-ab≥2ab-ab=ab,
即有ab≤6,当且仅当a=b,取得等号.
则△ABC的面积为S=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\frac{3\sqrt{3}}{2}$,
当且仅当a=b=$\sqrt{6}$,取得最大值$\frac{3\sqrt{3}}{2}$.

点评 本题考查余弦定理和三角形的面积公式的运用,考查运用基本不等式求最值的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.若n∈N+,且n≥2,求证:$\frac{1}{2}$-$\frac{1}{n+1}$<$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是(  )
①长方体 ②圆锥 ③三棱锥 ④圆柱.
A.②①③B.①②③C.③②④D.④③②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆的一个顶点为A1(0,-$\sqrt{2}$),焦点在x轴上.若右焦点到直线x-y+2$\sqrt{2}$=0的距离3
(1)求椭圆的标准方程;
(2)过点M(1,1)的直线与椭圆交于A、B两点,且M点为线段AB的中点,求直线AB的方程及|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式x2-2x-3<0的解集为(  )
A.{x|-1<x<3}B.C.RD.{x|-3<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直三棱柱A1B1C1-ABC中,AC⊥BC,D、E分别为AB、AC中点.
(1)求证:DE∥面BCC1B1
(2)若CB=1,$AC=\sqrt{3}$,$A{A_{\;\;1}}=\sqrt{3}$.求异面直线A1E和CD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.向量$\overrightarrow{a}$在基底{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$}下可以表示为$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,若a在基底{$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$}下可表示为$\overrightarrow{a}$=λ($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)+μ($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),则λ=$\frac{5}{2}$,μ=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C的方程为:x2+y2-2x-4y+m=0.
(1)求m的取值范围;
(2)若圆C与直线3x+4y-6=0交于M、N两点,且|MN|=2$\sqrt{3}$,求m的值;
(3)设直线x-y-1=0与圆C交于A、B两点,是否存在实数m,使得以AB为直径的圆过原点,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,点E,F分别是四边形ABCD的边AD,BC的中点,AB=4,DC=6,$\overrightarrow{AB}$与$\overrightarrow{DC}$所成角是60°.
(1)若$\overrightarrow{EF}$=x$\overrightarrow{AB}$+y$\overrightarrow{DC}$,求实数x,y的值;
(2)求线段EF的长度.

查看答案和解析>>

同步练习册答案