【题目】在四棱锥中,.
(1)设与相交于点,,且平面,求实数的值;
(2)若且, 求二面角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.
(1)求和的标准方程;
(2)过点的直线与交于,与交于,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为。
(Ⅰ)求一投保人在一年度内出险的概率;
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“礼让斑马线”驾驶员人数 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程;
(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?
(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.
参考公式: ,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为和.
(I)求椭圆的方程
(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com