精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,

(1)相交于点,且平面,求实数的值;

(2)若, 求二面角的正弦值.

【答案】(1)见解析;(2)

【解析】分析:(1) 易得,然后利用平面性质易得实数的值;(2)先证明平面为坐标原点,的方向为轴的正方向建 立空间直角坐标系,求出平面与平面的法向量,代入公式可得二面角的正弦值.

详解:(1)因为,所以

因为平面平面平面

所以

所以,即

(2)因为,可知为等边三角形,

所以,又

,所有

由已知,所以平面

如图,以为坐标原点,的方向为轴的正方向建

立空间直角坐标系,设,则

所以,则

设平面的一个法向量为,则有

,则,所以

设平面的一个法向量为,由已知可得

 

,则,所以

所以

设二面角的平面角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的圆上, 垂直与圆所在平面, 的垂心.

(1)求证:平面平面

(2)若,点在线段上,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,且是函数的一个极值,求函数的最小值;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点是坐标原点的抛物线的焦点轴正半轴上,圆心在直线上的圆轴相切,且关于点对称.

(1)求的标准方程;

(2)过点的直线交于,与交于求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为

)求一投保人在一年度内出险的概率

)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

6

不“礼让斑马线”驾驶员人数

120

105

100

85

90

80

(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程

(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?

(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为.

(I)求椭圆的方程

(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线.

(1)当时,求的单调区间;

(2)若对任意时,恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案