由曲线y=|x|,y=-|x|,x=2,x=-2同成的封闭图形绕y轴旋转一周所得的旋转体的体积为V,则V=__________.
科目:高中数学 来源: 题型:013
若将曲线y=f(x)平移,使曲线上一点P的坐标由(1,0)变为(2,2),则此时曲线的方程是( )
A.y=f(x-1)+2
B.y=f(x-1)-2
C.y=f(x+1)-2
D.y=f(x+1)+2
查看答案和解析>>
科目:高中数学 来源:三点一测丛书 高中数学 必修5 (江苏版课标本) 江苏版课标本 题型:044
对平面区域D,用N(D)表示属于D的所有整点的个数,若A表示由曲线y=x2(x≥0)和两直线x=10,y=1所围成的区域(包括边界);B表示曲线y=x2(x≥0)和两直线x=1,y=100所围成的区域(包括边界).试求N(A∪B)+N(A∩B)的值.
查看答案和解析>>
科目:高中数学 来源:全优设计选修数学-2-2苏教版 苏教版 题型:013
如图,由曲线y=f(x),直线x=a,x=b及由y=0所围成的图形面积等于
A.f(x)dx
B.f(x)dx+f(x)dx
C.f(x)dx-f(x)dx
D.f(x)dx-f(x)dx
查看答案和解析>>
科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题
已知函数f(x)=alnx-x2+1.
(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0时恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范围是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com