精英家教网 > 高中数学 > 题目详情
21、某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格.销售量可以增加,且每星期多卖出的商品件数与商品单价的降低销x(单位:元,0≤x≤30)的平方成正比.已知商品单价降低2元时,一星期多卖出24件.
(Ⅰ)将一个星期的商品销售利润表示成x的函数;
(Ⅱ)如何定价才能使一个星期的商品销售利润最大?
分析:(Ⅰ)先设商品降价x元,写出多卖的商品数,则可计算出商品在一个星期的获利数,再依题意:“商品单价降低2元时,一星期多卖出24件”求出比例系数即可得一个星期的商品销售利润表示成x的函数;
(Ⅱ)根据(Ⅰ)中得到的函数,利用导数研究其极值,从而救是f(x)达到极大值.从而得出所以定价为多少元时,能使一个星期的商品销售利润最大.
解答:解:(Ⅰ)设商品降价x元,则多卖的商品数为kx2,若记商品在一个星期的获利为f(x),
则依题意有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2),
又由已知条件,24=k•22,于是有k=6,
所以f(x)=-6x3+126x2-432x+9072,x∈[0,30].
(Ⅱ)根据(Ⅰ),我们有f'(x)=-18x2+252x-432=-18(x-2)(x-12).

∴当x=12时,f(x)达到极大值.
因为f(0)=9072,f(12)=11264,
所以定价为30-12=18元能使一个星期的商品销售利润最大.
点评:本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.利用导数求函数的最值是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某商品每件成本9元,售价为30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤21)的平方成正比.已知商品售价降低2元时,一星期多卖出24件.
(Ⅰ)将一个星期内该商品的销售利润表示成x的函数;
(Ⅱ)如何定价才能使一个星期该商品的销售利润最大?

查看答案和解析>>

科目:高中数学 来源:2010-2011学年陕西省高三第一次月考文科数学卷 题型:解答题

某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.

(I)将一个星期的商品销售利润表示成的函数;

(II)如何定价才能使一个星期的商品销售利润最大?

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期期中考试数学文卷 题型:解答题

(本小题满分14分)

某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.

(I)将一个星期的商品销售利润表示成的函数;

(II)如何定价才能使一个星期的商品销售利润最大?

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省豫南九校高三上学期第二次联考文科数学卷 题型:解答题

(本小题满分12分)

某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出商品件数与商品单价的降低值x(单位:元,0≤x≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件

(1)将一个星期的商品销售利润表示成x的函数;

(2)如何定价才能使一个星期的商品销售利润最大?

 

查看答案和解析>>

同步练习册答案