精英家教网 > 高中数学 > 题目详情

的方程为,圆的方程为,过圆 上任意一点作圆的两条切线,切点分别为,则 的最小值是(    )

A.6             B.              C.7               D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C中心在坐标原点O焦点在x上,F1,F2分别是椭圆C左、右焦点,M椭圆短轴的一个端点,过F1的直线l椭圆交于A、B两点,△MF1F2的面积为4,△ABF2的周长为8
2

(1)求椭圆C的方程;
(2)设点Q的坐标为(1,0)存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切.若存在,求出点P坐标及圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C中心在坐标原点O焦点在x上,F1,F2分别是椭圆C左、右焦点,M椭圆短轴的一个端点,过F1的直线l椭圆交于A、B两点,△MF1F2的面积为4,△ABF2的周长为8
2

(1)求椭圆C的方程;
(2)设点Q的坐标为(1,0)存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切.若存在,求出点P坐标及圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

图6

我们把由半椭圆=1(x≥0)与半椭圆=1(x≤0)合成的曲线称作“果圆”,其中a2=b2+c2,a>0,b>c>0.

如图6,点F0、F1、F2是相应椭圆的焦点,A1、A2和B1、B2分别是“果圆”与x、y轴的交点.〔(文)M是线段A1A2的中点〕

(1)(理)若△F0F1F2是边长为1的等边三角形,求“果圆”的方程.

(2)(理)当|A1A2|>|B1B2|时,求的取值范围.

(文)设P是“果圆”的半椭圆=1(x≤0)上任意一点,求证:当|PM|取得最小值时,P在点B1、B2或A1处.

(3)(理)连结“果圆”上任意两点的线段称为“果圆”的弦.试研究:是否存在实数k,使斜率为k的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k值;若不存在,请说明理由.

(文)若P是“果圆”上任意一点,求|PM|取得最小值时点P的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

        已知椭圆C的中心在的点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为

   (I)求椭圆C的方程;

   (II)设点Q的从标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

        已知椭圆C的中心在的点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为

   (I)求椭圆C的方程;

   (II)设点Q的从标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案