【题目】若存在与正实数,使得成立,则称函数在处存在距离为的对称点,把具有这一性质的函数称之为“型函数”.
(1)设,试问是否是“型函数”?若是,求出实数的值;若不是,请说明理由;
(2)设对于任意都是“型函数”,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】定义:若数列满足,存在实数,对任意,都有,则称数列有上界,是数列的一个上界,已知定理:单调递增有上界的数列收敛(即极限存在).
(1)数列是否存在上界?若存在,试求其所有上界中的最小值;若不存在,请说明理由;
(2)若非负数列满足,(),求证:1是非负数列的一个上界,且数列的极限存在,并求其极限;
(3)若正项递增数列无上界,证明:存在,当时,恒有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.
(1)求证:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以椭圆()的右焦点为圆心,为半径作圆(其中为已知椭圆的半焦距),过椭圆上一点作此圆的切线,切点为.
(1)若,为椭圆的右顶点,求切线长;
(2)设圆与轴的右交点为,过点作斜率为()的直线与椭圆相交于、两点,若恒成立,且.求:
(ⅰ)的取值范围;
(ⅱ)直线被圆所截得弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若满足为上奇函数且为上偶函数,求的值;
(2)若函数满足对恒成立,函数,求证:函数是周期函数,并写出的一个正周期;
(3)对于函数,,若对恒成立,则称函数是“广义周期函数”, 是其一个广义周期,若二次函数的广义周期为(不恒成立),试利用广义周期函数定义证明:对任意的,,成立的充要条件是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《上海市生活垃圾管理条例》于2019年7月1日正式实施,某小区全面实施垃圾分类处理,已知该小区每月垃圾分类处理量不超过300吨,每月垃圾分类处理成本(元)与每月分类处理量(吨)之间的函数关系式可近似表示为,而分类处理一吨垃圾小区也可以获得300元的收益.
(1)该小区每月分类处理多少吨垃圾,才能使得每吨垃圾分类处理的平均成本最低;
(2)要保证该小区每月的垃圾分类处理不亏损,每月的垃圾分类处理量应控制在什么范围?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张军自主创业,在网上经营一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120元/千克、80元/千克、70元/千克、40元千克,为增加销量,张军对这四种干果进行促销:一次购买干果的总价达到150元,顾客就少付x(2x∈Z)元.每笔订单顾客网上支付成功后,张军会得到支付款的80%.
①若顾客一次购买松子和腰果各1千克,需要支付180元,则x=________;
②在促销活动中,为保证张军每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com