精英家教网 > 高中数学 > 题目详情
5.设{an}是正数等差数列,{bn}是正数等比数列,且a1=b1,a11=b11,则(  )
A.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}>lg{a_6}>lg{b_6}$B.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{a_6}≥lg{b_6}$
C.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{b_6}≥lg{a_6}$D.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}<lg{a_6}<lg{b_6}$

分析 先根据等差中项的性质可知a1+a11=b1+b11=2a6,进而根据基本不等式,进而根据a1+a11=b1+b11
再由$\frac{{{a}_{1}}^{2}+{{a}_{11}}^{2}}{2}$≥($\frac{{a}_{1}+{a}_{11}}{2}$)2,再由等差中项的性质和对数函数的单调性,即可得到答案.

解答 解:∵a1=b11=b11
∴a1+a11=b1+b11=2a6
∵b6=$\sqrt{{b}_{1}{b}_{11}}$≤$\frac{{b}_{1}+{b}_{11}}{2}$=a6
当等号成立时有b1=b11,此时须有q=1,d=0,
∴b6≤a6,即有lgb6≤lga6
又$\frac{{{a}_{1}}^{2}+{{a}_{11}}^{2}}{2}$≥($\frac{{a}_{1}+{a}_{11}}{2}$)2
可得$\sqrt{\frac{{{a}_{1}}^{2}+{{a}_{11}}^{2}}{2}}$≥$\frac{{a}_{1}+{a}_{11}}{2}$=a6
即有lg$\sqrt{\frac{{{a}_{1}}^{2}+{{a}_{11}}^{2}}{2}}$≥lg$\frac{{a}_{1}+{a}_{11}}{2}$=lga6
综上可得lg$\sqrt{\frac{{{a}_{1}}^{2}+{{a}_{11}}^{2}}{2}}$≥lga6≥lgb6
故选:B.

点评 本题主要考查了等差(比)数列的性质.有些同学做错,是因为不能灵活运用等差中项和等比中项的定义及基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在棱长为a的正方体ABCD-A1B1C1D1中,点A到平面A1BD的距离为$\frac{\sqrt{3}}{3}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知|$\overrightarrow{a}$|=2,(2$\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{0,x是有理数}\\{1,x是无理数}\end{array}\right.$,则f[f($\sqrt{2}$)]等于0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2x+2ax+b且$f(1)=\frac{5}{2}$,$f(2)=\frac{17}{4}$
(Ⅰ)求a,b的值;
(Ⅱ)判断并证明f(x)的奇偶性;
(Ⅲ)试判断f(x)在(-∞,0)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设命题$p:\frac{{2{x^2}}}{x+1}<1$,命题q:x2-(2a-1)x+a(a-1)≤0,若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若一抛物线的顶点在原点,焦点为F(0,$\frac{1}{2}$),在该抛物线的方程为(  )
A.y2=$\frac{1}{8}$xB.y2=2xC.y=2x2D.y=$\frac{1}{2}$x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题:“?x∈[1,+∞),x3+2x<0”的否定是(  )
A.?x∈(-∞,0),x3+2x<0B.?x∈[0,+∞),x3+2x<0C.?x∈(-∞,0),x3+2x≥0D.?x∈[0,+∞),x3+2x≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列各式正确的是(  )
A.(cosx)′=sinxB.(ax)′=axlnaC.${({sin\frac{π}{12}})^'}=cos\frac{π}{12}$D.${({{x^{-5}}})^'}=-\frac{1}{5}{x^{-6}}$

查看答案和解析>>

同步练习册答案