精英家教网 > 高中数学 > 题目详情
19.正方形的四个顶点都在函数y=x3+mx的图象上,若满足条件的正方形只有一个,则实数m=-2$\sqrt{2}$.

分析 设正方形ABCD对角线AC所在的直线方程为y=kx,则其斜率唯一确定,转化为二元方程只有唯一实数根,利用根的判别式求解即可.

解答 解:设正方形ABCD对角线AC所在的直线方程为y=kx(k≠0),
则对角线BD所在的直线方程为y=-$\frac{1}{k}$x.
由$\left\{\begin{array}{l}{y=kx}\\{y={x}^{3}+mx}\end{array}\right.$,解得x2=k-m,
所以AO2=x2+y2=(1+k2)x2=(1+k2)•(k-m),
同理,BO2=[1+(-$\frac{1}{k}$)2]•(-$\frac{1}{k}$-m)=-$\frac{1+{k}^{2}}{{k}^{2}}$•($\frac{1}{k}$+m),
又因为AO2=BO2,所以k3-k2m+$\frac{1}{k}$+m=0.
即k2+$\frac{1}{{k}^{2}}$-m(k-$\frac{1}{k}$)=0,即(k-$\frac{1}{k}$)2-m(k-$\frac{1}{k}$)+2=0.
令k-$\frac{1}{k}$=t得t2-mt+2=0
因为正方形ABCD唯一确定,则对角线AC与BD唯一确定,
于是k-$\frac{1}{k}$值唯一确定,
所以关于t的方程t2-mt+2=0有且只有一个实数根,
又k-$\frac{1}{k}$=t∈R.
所以△=m2-8=0,即m=±2$\sqrt{2}$.
因为x2=k-m>0,所以m<k;
又-$\frac{1}{k}$-m>0,所以m<-$\frac{1}{k}$,故m<0.
因此m=-2$\sqrt{2}$;
反过来m=-2$\sqrt{2}$时,t=-$\sqrt{2}$,k-$\frac{1}{k}$=-$\sqrt{2}$,
于是k=$\frac{-\sqrt{2}+\sqrt{6}}{2}$,-$\frac{1}{k}$=$\frac{-\sqrt{2}-\sqrt{6}}{2}$;
或k=$\frac{-\sqrt{2}-\sqrt{6}}{2}$,-$\frac{1}{k}$=$\frac{-\sqrt{2}+\sqrt{6}}{2}$.
于是正方形ABCD唯一确定.
故答案为:-2$\sqrt{2}$.

点评 本题主要考查函数的解析式的求法以及导数,单调性,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知点P为椭圆x2+2y2=98上一个动点,A(0,5),求|PA|的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,a1=$\frac{4}{3}$,且有an+1=an2-an+1,n∈N*
(I)求证:数列{an}是递增数列;
(Ⅱ)记Sn=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$,Tn=$\frac{1}{{a}_{1}}•\frac{1}{{a}_{2}}•…•\frac{1}{{a}_{n}}$求证:Sn+3Tn=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C的圆心在直线2x-7y+8=0上,且过点A(6,0),B(1,5),直线l的倾斜角为135°,解答下列问题
(1)若直线l的横截距为3,求直线l的方程;
(2)求圆C的一般方程;
(3)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线l不经过第三象,设它的斜率为k,在y轴上的截距为b(b≠0),那么(  )
A.k•b<0B.k•b≤0C.k•b>0D.k•b≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若$\frac{2sinα+cosα}{2cosα-sinα}$=2,求sinα+cosα的值及2sinαcosα+cos2α-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.王华大学毕业后在一家公司做推销员,他对自己的工作业绩进行汇总时得到如下的一个表格:
工作时间(单位:月)与月推销金额(单位:万元)的有关数据:
工作时间x 35679
月推销金额y23345
(1)画出散点图,判断月推销金额y与工作时间x是否有线性相关关系;
(2)如果y与x之间具有线性相关关系,求出线性回归方程;
(3)若王华的工作时间为12个月,试估计他的月推销金额.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=2n+n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设极坐标的极点是直角坐标系的原点,极轴是x轴的正半轴,取相同的单位长度,已知直线1的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,且α≠kπ+$\frac{π}{2}$,k∈z),圆C的极坐标方程为p=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且圆C与直线l不相交.
(I)求直线l的普通方程;
(Ⅱ)设曲线C1的参数方程为$\left\{\begin{array}{l}{x=a}\\{y=-\frac{2}{\sqrt{a}}}\end{array}\right.$ (a为参数),点P在曲线C1上.求点P到直线1距离的最小值及取得最小值时点P的坐标.

查看答案和解析>>

同步练习册答案