精英家教网 > 高中数学 > 题目详情

【题目】如图,在平行四边形中, °,四边形是矩形, ,平面平面.

1,求证:

2若二面角的正弦值为的值.

【答案】(1)见解析;(2).

【解析】分析:连接,在中,利用余弦定理和勾股定理,得到,再由四边形为矩形,得到,进而得到 ,利用线面垂直的判定定理证得,即可证得

(2)以为原点, 所在的直线为轴,建立空间直角坐标系,求解平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值,即可求解的值.

详解:(1)连接,在中,由,由余弦定理易得,又,则;同理由余弦定理易得: ,由四边形是矩形,则,又平面平面,所以平面,所以,同理,由勾股定理易求得 ,显然,故

,所以,所以,所以,所以

(2)以点为原点, 所在的直线分别为轴, 轴,过点与平面垂直的直线轴建立空间直角坐标系,则

设平面的法向量为,则,即,

,则,即,

同理可求得平面的法向量为

设二面角的平面角为,则

,即,解之得,又,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在三棱柱ABC-平面ABCDEFG分别为AC的中点AB=BC=AC==2.

求证AC平面BEF

求二面角B-CD-C1的余弦值

证明直线FG与平面BCD相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=,AB=4.

(1)求证:MPB的中点;

(2)求二面角B-PD-A的大小;

(3)求直线MC与平面BDP所成角的正炫值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求证:AA1⊥平面ABC;

(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.试验数据分别列于表和表.统计方法中,同一组数据常用该组区间的中点值作为代表.

停车距离(米)

频数

平均每毫升血液酒精含量毫克

平均停车距离

1)根据最小二乘法,由表的数据计算关于的回归方程

2)该测试团队认为:驾驶员酒后驾车的平均“停车距离”大于无酒状态下(表)的停车距离平均数的倍,则认定驾驶员是“醉驾”.请根据(1)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?

附:回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的飞速发展,人们的生活发生了很大变化,其中无现金支付是一个显著特征,某评估机构对无现金支付的人群进行网络问卷调查,并从参与调查的数万名受访者中随机选取了300人,把这300人分为三类,即使用支付宝用户、使用微信用户、使用银行卡用户,各类用户的人数如图所示,同时把这300人按年龄分为青年人组与中年人组,制成如图所示的列联表:

支付宝用户

非支付宝用户

合计

中老年

90

青年

120

合计

300

(1) 完成列联表,并判断是否有99%的把握认为使用支付宝用户与年龄有关系?

(2)把频率作为概率,从所有无现金支付用户中(人数很多)随机抽取3人,用表示所选3人中使用支付宝用户的人数,求的分布列与数学期望.

附:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若函数有三个不同的零点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ.求函数的最小正周期和单调递增区间;

Ⅱ.时,方程恰有两个不同的实数根,求实数的取值范围;

Ⅲ.将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.

查看答案和解析>>

同步练习册答案