精英家教网 > 高中数学 > 题目详情
精英家教网如图,在正方体ABCD-A′B′C′D′中,E,F分别为AB,AA′的中点.
求证:CE,D′F,DA三条直线交于一点.
分析:先证四边形EFD'C为梯形,再证M∈平面AA'D'D,M∈平面ABCD,又平面AA'D'D∩平面ABCD=AD,根据公理2可证M∈AD.
解答:证明:在正方体ABCD-A′B′C′D′中,连A′B,
∵BC∥A′D′,BC=A′D′,
∴四边形A'D'CB为平行四边形,
∴A′B∥D′C,A′B=D′C,
又EF为△AA'B的中位线,
∴EF∥A′B,EF=
1
2
A′B,
∴EF∥D′C,EF=
1
2
D′C,
∴四边形EFD'C为梯形.
设D'F∩CE=M,则M∈D'F,M∈EC.
∴M∈平面AA'D'D,M∈平面ABCD.
又平面AA'D'D∩平面ABCD=AD,∴M∈AD,
即CE,D'F,DA三条直线交于一点.
精英家教网
点评:本题考查了公理4和公理2,考查了公理的熟练应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案
关 闭