精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,且存在不相等的实数,使得,求证:.

【答案】(1)见证明;(2)见证明

【解析】

(1)求得函数的导数,分类讨论,即可求解函数的单调区间;

(2)由存在不相等的实数,使得矛盾,得到,再由,转化为证明,转化为证明,利用换元法和导数,求得函数的单调性与最值,即可求解.

(1)由题意,函数,可得

时,因为,所以,所以

故函数上单调递增;

时,,所以

故函数单调递增;当时,

解得

解得

所以函数在区间上单调递减,

在区间和区间上单调递增.

综上所述,当时,函数上单调递增,

时,函数在区间上单调递减,

在区间和区间上单调递增.

(2)由题知,则.

时,,所以上单调递增,

与存在不相等的实数,使得矛盾,所以.

,得

所以,不妨设

因为,所以

欲证,只需证

只需证

,等价于证明,即证

所以在区间上单调递减,所以

从而得证,于是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】谢尔宾斯基三角形(Sierpinski triangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出.在一个正三角形中,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色三角形代表挖去的部分,黑色三角形为剩下的部分,我们称此三角形为谢尔宾斯基三角形.若在图(3)内随机取一点,则此点取自谢尔宾斯基三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】工厂抽取了在一段时间内生产的一批产品,测量一项质量指标值,绘制了如图所示的频率分布直方图.

(1)计算该样本的平均值,方差;(同一组中的数据用该组区间的中点值作代表)

(2)若质量指标值在之内为一等品.

(i)用样本估计总体,问该工厂一天生产的产品是否有以上为一等品?

(ii)某天早上、下午分别抽检了50件产品,完成下面的表格,并根据已有数据,判断是否有的把握认为一等品率与生产时间有关?

一等品个数

非一等品个数

总计

早上

36

50

下午

26

50

总计

附:.

0.25

0.15

0.10

0.050

0.010

0.001

1.323

2.072

2.706

3.841

6.635

10.828

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问5分,2小问7分

图,椭圆的左、右焦点分别为的直线交椭圆于两点,且

1求椭圆的标准方程

2求椭圆的离心率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性

(2)函数,且.若在区间(0,2)内有零点,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a0,且a≠1.命题P:函数fx)=logax在(0+∞)上为增函数;命题Q:函数gx)=x22ax+4有零点.

1)若命题PQ满足PQ假,求实数a的取值范围;

2)命题S:函数yfgx))在区间[2+∞)上值恒为正数.若命题S为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”逐渐成为人们支付购物的一种形式.某机构对“使用微信支付”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信支付”赞成人数如下表.

年龄

(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信支付”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在的被调查人中按照赞成与不赞成分层抽样,抽取5人进行追踪调查,在5人中抽取3人做专访,求3人中不赞成使用微信支付的人数的分布列和期望值.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆,以椭圆的焦点为顶点作相似椭圆.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,且与椭圆仅有一个公共点,试判断的面积是否为定值(为坐标原点)若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)设函数(其中的导函数),判断上的单调性;

(2)若函数在定义域内无零点,试确定正数的取值范围.

查看答案和解析>>

同步练习册答案