精英家教网 > 高中数学 > 题目详情
若f(x)=-x2+bln(x+2)在(-1,+∞)上是减函数,则b的取值范围是   
【答案】分析:根据函数在(-1,+∞)上是减函数,对函数f(x)进行求导,判断出f′(x)<0进而根据导函数的解析式求得b的范围.
解答:解:由题意可知f′(x)=-x+<0,
在x∈(-1,+∞)上恒成立,即b<x(x+2)在x∈(-1,+∞)上恒成立,
∵f(x)=x(x+2)=x2+2x且x∈(-1,+∞)
∴f(x)>-1
∴要使b<x(x+2),需b≤-1
故答案为b≤-1
点评:本题主要考查了函数单调性的应用.利用导函数来判断函数的单调性,是常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

24、(选做题)选修4-5:不等式选讲
已知|x1-2|<1,|x2-2|<1.
(Ⅰ)求证:|x1-x2|<2;
(Ⅱ)若f(x)=x2-x+1,求证:|x1-x2|≤|f(x1)-f(x2)|≤5|x1-x2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-2x-4lnx,则f(x)的单调递增区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2+2(a-1)x+2在区间(-∞,2)上是减函数,则实数a的范围是
a≤-1
a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“紧密函数”.若f(x)=x2-3x+2与g(x)=mx-1在[1,2]上是“紧密函数”,则m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-cosx,x∈[-
π
2
π
2
],设g(x)=|f(x)|-
1
2
,则函数g(x)的零点个数为(  )

查看答案和解析>>

同步练习册答案