精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sin(π-ωx)-sin(
π
2
-ωx)(ω>0)
的图象两相邻最高点的坐标分别为(
π
3
,2),(
4
3
π,2)

(1)求函数解析式;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=2,求
b-2c
a
的取值范围.
分析:(1)函数f(x)解析式利用诱导公式化简,再利用两角和与差的正弦函数公式化简为一个角的正弦函数,根据题意得出函数的周长,利用周期公式求出ω的值,即可确定出f(x)的解析式;
(2)由f(A)=2,利用特殊角的三角函数值求出A的度数,所求式子利用正弦定理化简,整理后得到最简结果,根据B的范围求出cosB的值域,即可确定出所求式子的范围.
解答:解:(1)f(x)=
3
sinωx-cosωx=2sin(ωx-
π
6
),
∵周期T=
3
-
π
3
=π=
ω
,∴w=2,
则f(x)=2sin(2x-
π
6
);
(2)∵f(A)=2sin(2A-
π
6
)=2,∴sin(2A-
π
6
)=1,
∵0<A<π,∴-
π
6
<2A-
π
6
11π
6

∴2A-
π
6
=
π
2
,即A=
π
3

由正弦定理得:
b-2c
a
=
sinB-2sinC
sinA
=
2
3
[sinB-2sin(
3
-B)]=-2cosB,
∵0<B<
3
,∴-
1
2
<cosB<1,
则-2<
b-2c
a
<1.
点评:此题考查了两角和与差的正弦函数公式,正弦定理,余弦函数的定义域与值域,以及三角函数的周期性及其求法,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案