精英家教网 > 高中数学 > 题目详情
设定义域为R的奇函数y=f(x)是减函数,若当θ∈[0,
π
2
]时,f(cos2θ+2msinθ)+f(-2m-2)>0恒成立,求m的取值范围.
由条件可得:f(cos2θ+2msinθ)>-f(-2m-2)
由于y=f(x)是奇函数,故有f(-2m-2)=-f(2m+2)(2分)
即f(cos2θ+2msinθ)>f(2m+2)
又由于y=f(x)是减函数,等价于cos2θ+2msinθ<2m+2恒成立.(4分)
设t=sinθ∈[0,1],等价于t2-2mt+2m+1>0在t∈[0,1]恒成立.(6分)
只要g(t)=t2-2mt+2m+1在[0,1]的最小值大于0即可.(8分)
(1)当m<0时,最小值为g(0)=2m+1>0,所以可得:0>m>-
1
2

(2)当0≤m≤1时,最小值为g(m)=-m2+2m+1>0,所以可得:0≤m≤1
(3)当m>1时,最小值为g(1)=2>0恒成立,得:m>1,(13分)
综之:m>-
1
2
为所求的范围.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义域为R的奇函数y=f(x)是减函数,若当θ∈[0,
π2
]时,f(cos2θ+2msinθ)+f(-2m-2)>0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区一模)设定义域为R的奇函数y=f(x)在区间(-∞,0)上是减函数.
(1)求证:函数y=f(x)在区间(0,+∞)上是单调减函数;
(2)试构造一个满足上述题意且在(-∞,+∞)内不是单调递减的函数.(不必证明)

查看答案和解析>>

科目:高中数学 来源:2005-2006学年浙江省杭州四中(下沙校区)高一(下)期中数学试卷(解析版) 题型:解答题

设定义域为R的奇函数y=f(x)是减函数,若当θ∈[0,]时,f(cos2θ+2msinθ)+f(-2m-2)>0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省厦门大学附属科技中学高一(下)期中数学试卷(解析版) 题型:解答题

设定义域为R的奇函数y=f(x)是减函数,若当θ∈[0,]时,f(cos2θ+2msinθ)+f(-2m-2)>0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年安徽省高考数学最后冲刺试卷(六)(解析版) 题型:解答题

设定义域为R的奇函数y=f(x)是减函数,若当θ∈[0,]时,f(cos2θ+2msinθ)+f(-2m-2)>0恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案