精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1处取极值在点处的切线方程

2)当有唯一的零点

表示不超过的最大整数,如

参考数据:

【答案】(1);(22

【解析】试题分析:1)求导,利用对应导函数为0求出值,再利用导数的几何意义进行求解;2)求导,讨论导函数的符号变化确定函数的单调性和极值,通过极值的符号确定零点的位置,再利用零点存在定理进行求解.

试题解析:1因为,所以,解得,则,即在点处的切线方程为,即

2

,则

,可得

上单调递减,在上单调递增

由于,故时,

,故上有唯一零点,设为

从而可知上单调递减,在上单调递增

由于有唯一零点,故

......

,可知上单调递增

由于

故方程的唯一零点,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在岁到岁的人群中随机调查了人,并得到如图所示的频率分布直方图,在这人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如图所示:

年龄

不支持“延迟退休年龄政策”的人数

(1)由频率分布直方图,估计这人年龄的平均数;

(2)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?

45岁以下

45岁以上

总计

不支持

支持

总计

附:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为,直线l的方程为,点P在直线l上,过P点作圆M的切线,切点为AB.

1)若,试求点P的坐标;

2)求证:经过APM三点的圆必过定点,并求出所有定点的坐标;

3)设线段的中点为N,求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若1路、2路公交车均途经泉港一中校门口,其中1路公交车每10分钟一趟,2路公交车每20分钟一趟,某生去坐这2趟公交车回家,则等车不超过5分钟的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,若acos2ccos2b,那么abc的关系是(

A.a+bcB.a+c2bC.b+c2aD.abc

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F(1,0),抛物线E:x2=2py的焦点为M.

(1)若过点M的直线l与抛物线C有且只有一个交点,求直线l的方程;

(2)若直线MF与抛物线C交于A,B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“砥砺奋进的五年”,泉州市经济社会发展取得新成就.自2012年以来,泉州市城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收入快速增长,人民生活品质不断提升.下图是泉州市2012-2016年城乡居民人均可支配收入实际增速趋势图(例如2012年,泉州城镇居民收入实际增速为7.3%,农村居民收入实际增速为8.2%).

(1)从2012-2016五年中任选一年,求城镇居民收入实际增速大于7%的概率;

(2)从2012-2016五年中任选二年,求至少有一年农村和城镇居民收入实际增速均超过7%的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”是一个类似计步数据库的公众帐号,用户只需以运动手环或手机协处理器的运动教据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现,现随机选取朋友圈中的50人记录了他们某一天的走路步数,并将数据整理如下:

规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.

(1)填写下面列联表(单位:人),并根据列联表判断是否有的把握认为“评定类型与性别有关”;

附:

(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行在的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点ABCD的坐标分别为A(3,0)B(0,3)C(cosα,sinα),α∈(,).

1)若,求角α的值;

2)若,求的值.

3)若在定义域α∈(,)有最小值,求的值.

查看答案和解析>>

同步练习册答案