精英家教网 > 高中数学 > 题目详情
8.若向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(0,-1),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的最大值为2.

分析 利用向量模的计算公式和三角函数的单调性及值域即可得出.

解答 解:∵向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(0,-1),
∴$\overrightarrow{a}$-$\overrightarrow{b}$=(cosθ,sinθ+1),
∴|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{{cos}^{2}θ{+(sinθ+1)}^{2}}$=$\sqrt{2+2sinθ}$,
∴sinθ=1时,|$\overrightarrow{a}$-$\overrightarrow{b}$|最大,最大值是2,
故答案为:2.

点评 熟练掌握向量模的计算公式和三角函数的单调性及值域是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(1)证明:CD⊥平面PAE;
(2)若直线PB与平面PAE所成的角和直线PB与平面ABCD所成的角相等,求二面角P-CD-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\sqrt{2-x-{x^2}}$的定义域为A,函数g(x)=lg(x+1)的定义域为B,则A∩B=(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知随机变量ξ服从正态分布 N(2,σ2),P(ξ≥4)=0.16,则 P(ξ≤0)=(  )
A.0.16B.0.32C.0.68D.0.84

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某次知识竞赛中,从6道备选题中一次性随机抽取3道,并独立完成所抽取的3道题.某选手能正确完成其中4道题,规定至少正确答对其中2道题目便可过关.
(1)求该选手能过关的概率;
(2)记所抽取的3道题中,该选手答对的题目数为X,写出X的概率分布列,并求E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.抛物线C1:y2=2px(p>0),圆C2:(x-1)2+y2=1,抛物线C1上只有顶点在圆C2上,其他点均在圆C2的外面.
(1)求p的取值范围;
(2)过抛物线C1上一定点M(x0,y0)(y0>0),作两条直线分别交抛物线于A(x1,y1),B(x2,y2),当MA与MB的斜率存在且倾斜角互补时,证明直线AB的斜率是非零常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,四棱锥S-ABCD是底面ABCD为等腰梯形,CD∥AB,AC⊥BD,垂足为O,侧面SAD⊥底面ABCD,且∠ADS=$\frac{π}{2}$,AB=8,AD=$\sqrt{34}$,SD=$\sqrt{30}$,M为BS的中点.
(1)求证BS⊥平面AMC;
(2)求三棱锥B-CMD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在一次考试中,5名同学的数学、物理成绩如表所示:
学生A1A2A3A4A5
数学x(分)8991939597
物理y(分)8789899293
(1)根据表中数据,求物理分数y对数学分数x的线性回归方程;
(2)要从4名数学成绩在90分以上的同学中选2名参加一项活动,以X表示选中的同学的物理成绩高于90分的人数,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案