精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中.

(1)设的导函数,求函数的极值;

(2)是否存在常数,使得时, 恒成立,且有唯一解,若存在,求出的值;若不存在,说明理由.

【答案】(1)极大值为,没有极小值;(2).

【解析】试题分析:(1)求导,求得,( )求导,根据导数与函数单调性的关系,即可求得函数的极值;(2)由(1)可知:必然存在,使得 单增, 单减,且,求得的表达式,存在使得,代入即可求得,即可求得的值.

试题解析:

(1)

单增;在单减,

极大值,没有极小值

(2)由(1)知: ,且 单减,且<0

则必然存在 ,使得 单增, 单减;

,即

此时:当 时,由题意知:只需要找实数 使得

将①式带入知:

得到 ,从而.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列3个命题: 1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;
3)y=x2﹣2|x|﹣3的递增区间为[1,+∞).
其中正确命题的个数是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式ax2﹣3x+2>0的解集为{x|x<1或x>b}
(1)求实数a、b的值;
(2)解关于x的不等式 >0(c为常数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=bax(a,b为常数且a>0,a≠1)的图象经过点A(1,8),B(3,32)
(1)试求a,b的值;
(2)若不等式( x+( x﹣m≥0在x∈(﹣∞,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={1,2,3,4,5,6,7,8,9,10,11,12},以下命题正确的序号是
①如果函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),其中ai∈M(i=1,2,3,…,7),那么f′(0)的最大值为127
②数列{an}满足首项a1=2,ak+12﹣ak2=2,k∈N* , 当n∈M且n最大时,数列{an}有2048个.
③数列{an}(n=1,2,3,…,8)满足a1=5,a8=7,|ak+1﹣ak|=2,k∈N* , 如果数列{an}中的每一项都是集合M的元素,则符合这些条件的不同数列{an}一共有33个.
④已知直线amx+any+ak=0,其中am , an , ak∈M,而且am<an<ak , 则一共可以得到不同的直线196条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x2﹣2),若f(2)=1
(1)求a的值;
(2)求f(3 )的值;
(3)解不等式f(x)<f(x+2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,圆C

(1)过点向圆C引切线l,求切线l的方程;

(2)过点A作直线 交圆C于P,Q,且,求直线的斜率k;

(3)定点M,N在直线 上,对于圆C上任意一点R都满足,试求M,N两点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为1,B'C∩BC'=O,则AO与A'C'所成角的度数为(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
(1函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);
(2化简2 +lg5lg2+(lg2)2﹣lg2的结果为25;
(3若loga <1,则a的取值范围是(1,+∞);
(4若2x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),则x+y<0.
其中所有正确命题的序号是

查看答案和解析>>

同步练习册答案