精英家教网 > 高中数学 > 题目详情

【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

【答案】B

【解析】

理解黄金分割比例的含义,应用比例式列方程求解.

设人体脖子下端至肚脐的长为x cm,肚脐至腿根的长为y cm,则,得.又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为4207+515+105+26=17822,接近175cm.故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于的方程的实根个数记.1)若,则=____________;(2)若,存在使得成立,则的取值范围是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某食品厂生产的面包中抽取个,测量这些面包的一项质量指标值,由测量结果得如下频数分布表:

质量指标值分组

频数

(1)在相应位置上作出这些数据的频率分布直方图;

(2)估计这种面包质量指标值的平均数(同一组中的数据用该组区间的中点值作代表);

(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于的面包至少要占全部面包的规定?”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)在如图所示给定的直角坐标系内画出f(x)的图象

(2)写出f(x)的单调递增区间

(3)由图象指出当x取什么值时f(x)有最值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

1)画出函数图象并写出顶点坐标和对称轴;

2)判断奇偶性,并指出单调区间.

3)求函数时的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左、右焦点为F1F2,点P是坐标平面内一点,且其中O为坐标原点。

I) 求椭圆C的方程;

II) 如图,过点S0},且斜率为k的动直线l交椭圆于AB两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,.

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若曲线上一点的极坐标为,且过点,求的普通方程和的直角坐标方程;

(2)设点的交点为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为的中点.

(1)求证:直线平面

(2)求点到平面的距离.

查看答案和解析>>

同步练习册答案