精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c最小值为-1,且f(2-x)=f(2)+f(x).
(1)求f(x)的解析式;
(2)若f(x)在区间[2m,m+1]上单调,求m的取值范围.
考点:二次函数的性质
专题:计算题,函数的性质及应用
分析:(1)求出f(2-x),再由恒等式的性质,对应项的系数相等,即可得到f(x)=ax2-2ax,再由最小值为-1,即可得到a,进而得到解析式;
(2)求得对称轴,讨论区间和对称轴的关系,即可得到m的范围.
解答: 解:(1)f(2-x)=a(2-x)2+b(2-x)+c=ax2-(4a+b)x+4a+2b+c,
因为f(2-x)=f(2)+f(x)
所以ax2-(4a+b)x+4a+2b+c=4a+2b+c+ax2+bx+c,
即有
-(4a+b)=b
c=0
,即
b=-2a
c=0

所以f(x)=ax2-2ax=a(x-1)2-a,
因为f(x)=ax2+bx+c最小值为-1,所以a=1
所以f(x)=x2-2x;
(2)若f(x)在区间[2m,m+1]上单调,
所以
m+1≤1
m+1>2m
2m≥1
m+1>2m
,即m≤0或
1
2
≤m<1
所以m的取值范围是(-∞,0]∪[
1
2
,1).
点评:本题考查二次函数的解析式的求法,注意恒等式的性质,考查函数的单调性和运用,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-x,0<x≤2
2
x-1
,x>2
,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M经过第一象限,与y轴相切于点O(0,0),且圆M上的点到x轴的最大距离为2,过点P(0,-1)作直线l.
(1)求圆M的标准方程;
(2)当直线l与圆M相切时,求直线l的方程;
(3)当直线l与圆M相交于A、B两点,且满足向量
PA
PB
,λ∈[2,+∞)时,求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为l的正方体ABCD-ABCD的面对角线AB上存在一点P使得AP+DP取得最小值,则此最小值为(  )
A、2
B、
6
+
2
2
C、2+
2
D、
2+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(2x)=x2+2x,则f(x)的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P的坐标(x,y)满足
x-3y+5≤0
2x-y≥0
x+2y-10≤0
,过点P的直线l与圆C:x2+y2=36相交于A、B两点,则弦AB长的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知空间四边形ABCD的每条边及AC、BD的长都为a,点E、F、G分别是AB、AD、DC的中点,求:
(1)
AB
AC

(2)
AD
DB

(3)
GF
AC

(4)
EF
BC

(5)
FG
BA

(6)
GE
GF

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:cos(4π+
6
)=cos(π+
π
6
).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象过最高点M(
π
6
,3)及点N(
24
,0).
(1)求φ的值,并求f(
π
3
)的值;
(2)若将y=f(x)的图象上各点的横坐标伸长到原来的两倍(纵坐标不变),再将得到的图象向左平移
π
6
个单位,得到函数y=g(x)的图象.求函数g(x)在[-
π
2
π
2
]上的单调曾区间.

查看答案和解析>>

同步练习册答案