精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的图象如图所示,为了得到g(x)=sinωx的图象,则只要将f(x)的图象(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向右平移 个单位长度
D.向左平移 个单位长度

【答案】C
【解析】解:由函数的图象可知函数的周期为:T=4×( )=π, 所以:ω= =2,
因为:图象经过( ,0),
所以:0=sin(2× +φ),可得:2× +φ=kπ,k∈Z,
因为:|φ|<
所以:φ= ,可得:f(x)=sin(2x+ )=sin[2(x+ )],
所以:将f(x)的图象向右平移 个单位长度即可得到g(x)=sin2x的图象,
故选:C.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某科研小组研究发现:一棵水果树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系: .此外,还需要投入其它成本(如施肥的人工费等)百元.已知这种水果的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为(单位:百元).

(1)求的函数关系式;

当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且|MN|= ,求m的值;
(2)在(1)条件下,是否存在直线l:x﹣2y+c=0,使得圆上有四点到直线l的距离为 ,若存在,求出c的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,平面侧面,且

1)求证:

2)若直线与平面所成角的正弦值为,求锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是我国2009年至2015年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据: yi=9.32, tiyi=40.17, =0.55, ≈2.646.
参考公式:相关系数r= =
回归方程 = + t中斜率和截距的最小二乘估计公式分别为: = = t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中是然对数底数.

(1)若函数有两个不同的极值点 ,求实数的取值范围;

(2)当时,求使不等式在一切实数上恒成立的最大正整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.已知函数

(1)当时,求曲线在点处的切线方程;

(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在五面体中, , ,

,平面平面.

(1) 证明: 直线平面

(2) 已知为棱上的点,试确定点位置,使二面角的大小为.

查看答案和解析>>

同步练习册答案