精英家教网 > 高中数学 > 题目详情
过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为M,N,则线段MN的长为
 
考点:圆的切线方程
专题:计算题,直线与圆
分析:先求出圆心坐标和半径,直角三角形中使用边角关系求出cos∠OCM,二倍角公式求出cos∠MCN,三角形MCN中,用余弦定理求出|MN|.
解答: 解:圆x2+y2-6x-8y+20=0 可化为 (x-3)2+(y-4)2 =5,
圆心C(3,4)到原点的距离为5.故cos∠OCM=
5
5

∴cos∠MCN=2cos2∠OCM-1=-
3
5

∴|MN|2=(
5
2+(
5
2+2×(
5
2×
3
5
=16.∴|MN|=4.
故答案为:4
点评:本题考查直角三角形中的边角关系,二倍角的余弦公式,以及用余弦定理求边长.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U={0,1,2},且∁UA={2},则集合A等于(  )
A、{0}B、{0,1}
C、{1}D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x(|x|-2)在区间[-2,m]上的最大值为1,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

动圆C恒过定点F(-1,0),且与直线l:x=1相切
(1)求动圆圆心C的轨迹方程
(2)过点F作轨迹C的两条互相垂直的弦AB,CD,设AB、CD的中点分别为M,N,求线段MN的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在二项式(
x
+
2
x2
10的展开式中,常数项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于三条不同直线a,b,l以及两个不同平面α,β,下面命题正确的是(  )
A、若a∥α,b∥α,则a∥b
B、若a∥α,b⊥α,则b⊥α
C、若a⊥α,α∥β,则α⊥β
D、若a?α,b?α,且l⊥a,l⊥b,则l⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)(x∈R)满足|f(x)+(
1-x2
1+x2
2|≤
1
3
,且|f(x)-(
2x
1+x2
2|≤
2
3
.则f(0)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a≠b,cos2
A
2
-cos2
B
2
=sin
A
2
cos
A
2
-sin
B
2
cos
B
2

(1)求∠C的大小;
(2)若c=4,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x+z,3),
b
=(2,y-z),且
a
b
.若x,y满足不等式|x|+|y|≤1,则z的取值范围为
 

查看答案和解析>>

同步练习册答案