精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=-x2+2ex+m-1,g(x)=x+$\frac{{e}^{2}}{x}$(x>0)(e为自然对数的底)
(1)若f(x)的两个零点x1,x2,满足x1<1<x2,试求m的取值范围;
(2)若g(x)=m有零点,求m的取值范围;
(3)确定m的取值范围,使得函数h(x)=g(x)-f(x)存在两个零点.

分析 (1)先求出x1+x2,x1•x2,由题意得:x1+x2=2e,x1•x2=1-m,代入求出即可;
(2)运用基本不等式,即可得到g(x)的最小值,从而求出m的范围;
(3)函数h(x)=g(x)-f(x)有两个零点,即为y=f(x)和y=g(x)的图象有两个交点,分别求得函数f(x)的最大值和g(x)的最小值,即可得到m的范围.

解答 解:(1)函数f(x)=-x2+2ex+m-1,
令f(x)=0,则x2-2ex+1-m=0,
则x1+x2=2e,x1•x2=1-m,
若f(x)的两个零点x1,x2,满足x1<1<x2
则(x1-1)(x2-1)<0,
∴x1x2-(x1+x2)+1<0,
∴1-m-2e+1<0,
解得:m>2-2e;
(2)当x>0时,g(x)=x+$\frac{{e}^{2}}{x}$≥2$\sqrt{x•\frac{{e}^{2}}{x}}$=2e,
当且仅当x=e时,g(x)取得最小值,且为2e,
若g(x)=m有零点,只需m≥g(x)最小值=2e,
∴m≥2e;
(3)函数h(x)=g(x)-f(x)有两个零点,
即为y=f(x)和y=g(x)的图象有两个交点,
由于g(x)在x=e处取得最小值2e,
f(x)=-(x-e)2+e2+m-1,即有f(x)在x=e处取得最大值e2+m-1,
则有e2+m-1>2e,
解得m>2e+1-e2
则实数m的取值范围是(2e+1-e2,+∞).

点评 本题考查函数的最值的求法,同时考查基本不等式的运用和二次函数的最值的求法,以及函数和方程的转化思想的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.动点M(x,y)满足$\sqrt{(x-sinα)^{2}+(y-cosα)^{2}}$=|xsinα+ycosα-1|(其中α实常数),那么点M的轨迹是过A且与l垂直的直线,其方程为 xcosα-ysinα=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在区间[-1,1]上随机取一个数x,则0≤cos$\frac{πx}{2}$≤$\frac{1}{2}$的概率等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=4x-2x-a,a∈R.
(1)若f(x)>1恒成立,求实数a的取值范围;
(2)若a=-1,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a1,a2,a3,…an∈R+,a=$\sum_{i=1}^{n}$ai(n∈N,n≥2),求f(a1,a2,a3,…an)=$\sum_{i=1}^{n}$$\frac{{a}_{i}}{3a-{a}_{i}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民:

(1)分别估计该市的市民对甲、乙部门评分的中位数;
(2)分别估计该市的市民对甲、乙部门的评分高于90的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.画出y=|2x2+2x+1|的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆x2+$\frac{{y}^{2}}{4}$=1与x、y轴的交点分别为A、B,点P为椭圆上的动点,则使△PAB的面积为$\frac{1}{2}$的点P的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过双曲线16x2-9y2=144的-个焦点作-条渐近线的平行线,与双曲线交于一点P.点P与双曲线的两个顶点所构成的三角形的面积为$\frac{32}{5}$.

查看答案和解析>>

同步练习册答案