精英家教网 > 高中数学 > 题目详情
等差数列{an}中,a1=2,公差d≠0,且a1、a3、a11恰好是某等比数列的前三项,那么该等比数列的公比为( )
A.2
B.
C.
D.4
【答案】分析:因为{an}是等差数列,故a1、a3、a11都可用d表达,又因为a1、a3、a11恰好是某等比数列的前三项,
所以有a32=a1a11,即可求出d,从而可求出该等比数列的公比
解答:解:等差数列{an}中,a1=2,a3=2+2d,a11=2+10d,
因为a1、a3、a11恰好是某等比数列的前三项,
所以有a32=a1a11,即(2+2d)2=2(2+10d),解得d=3,
所以该等比数列的公比为=4
故选D
点评:本题考查等差数列的通项公式、等比数列的定义和公比,属基础知识、基本运算的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案