某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人.
(1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名?
(2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.
(1)2人;(2)恰有1人年龄大于40岁的概率为.
解析试题分析:(1)利用分层抽样中总体抽样比与各层中的抽样比相等这一特点,先求出抽样比例,然后用年龄大于40岁的人数乘以抽样比即可得到在年龄大于40岁的志愿者中抽取的人数;(2)这是古典概型的概率问题,先用列举法确定从5名志愿者中任取2名的所有可能有多少种,然后确定这2人中恰有1人年龄大于40岁的情况又有多少种,最后按照古典概型的概率计算公式计算即可.
试题解析:(1)若在志愿者中随机抽取5名,则抽取比例为 2分
∴年龄大于40岁的应该抽取人 4分
(2)上述抽取的5名志愿者中,年龄在20至40岁的有3人,记为1,2,3
年龄大于40岁的有2人,记为4,5 6分
从中任取2名,所有可能的基本事件为:
共10种 8分
其中恰有1人年龄大于40岁的事件有
共6种 10分
∴恰有1人年龄大于40岁的概率 12分.
考点:1.随机抽样;2.古典概率.
科目:高中数学 来源: 题型:解答题
某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:
人数 | 管理 | 技术开发 | 营销 | 生产 | 共计 |
老年 | 40 | 40 | 40 | 80 | 200 |
中年 | 80 | 120 | 160 | 240 | 600 |
青年 | 40 | 160 | 280 | 720 | 1 200 |
小计 | 160 | 320 | 480 | 1 040 | 2 000 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一家商场为了确定营销策略,进行了投入促销费用x和商场实际销售额y的试验,得到如下四组数据.
投入促销费用x(万元) | 2 | 3 | 5 | 6 |
商场实际营销额y(万元) | 100 | 200 | 300 | 400 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若满意度不低于98分,则评价该教师为“优秀”.求从这10人中随机选取3人,至多有1人评价
该教师是“优秀”的概率;
(3)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为
“优秀”的人数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | 0.050 | |
第2组 | ① | 0.350 | |
第3组 | 30 | ② | |
第4组 | 20 | 0.200 | |
第5组 | 10 | 0.100 | |
合计 | 100 | 1.00 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为分,规定测试成绩在之间为体质优秀;在之间为体质良好;在之间为体质合格;在之间为体质不合格.
现从某校高三年级的名学生中随机抽取名学生体质健康测试成绩,其茎叶图如下:
(Ⅰ)试估计该校高三年级体质为优秀的学生人数;
(Ⅱ)根据以上名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取名学生,再从这名学生中选出人.
(ⅰ)求在选出的名学生中至少有名体质为优秀的概率;
(ⅱ)求选出的名学生中体质为优秀的人数不少于体质为良好的人数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
从某年级学生中,随机抽取50人,其体重(单位:千克)的频数分布表如下:
分组(体重) | | |||
频数(人) | | | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某园艺师用两种不同的方法培育了一批珍贵树苗,在树苗3个月大的时候,随机抽取甲、乙两种方法培育的树苗各10株,测量其高度,得到的茎叶图如图所示(单位:cm).
(Ⅰ)依茎叶图判断用哪种方法培育的树苗的平均高度大?
(Ⅱ)现从用两种方法培育的高度不低于80cm的树苗中随机抽取两株,求至少有一株是甲方法培育的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某中学对高三年级进行身高统计,测量随机抽取的20名学生的身高,其频率分布直方图如下(单位:cm)
(1)根据频率分布直方图,求出这20名学生身高中位数的估计值和平均数的估计值;
(2)在身高为140—160的学生中任选2个,求至少有一人的身高在150—160之间的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com