精英家教网 > 高中数学 > 题目详情
已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上不同的两点,P是圆x2+y2+kx=0上的动点,如果M,N关于x-y-1=0对称,则△PAB面积的最大值是   
【答案】分析:利用M,N是圆x2+y2+kx=0上不同的两点,M,N关于x-y-1=0对称,可得圆心坐标与半径,进而可求△PAB面积的最大值.
解答:解:由题意,圆x2+y2+kx=0的圆心(-,0)在直线x-y-1=0上,∴--1=0,∴k=-2
∴圆x2+y2+kx=0的圆心坐标为(1,0),半径为1
∵A(-2,0),B(0,2),
∴直线AB的方程为,即x-y+2=0
∴圆心到直线AB的距离为=
∴△PAB面积的最大值是=
故答案为:
点评:本题考查圆的对称性,考查三角形面积的计算,考查点到直线的距离公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系中,以M(-1,0)为圆心的圆与直线x-
3
y-3=0
相切.
(1)求圆M的方程;
(2)已知A(-2,0)、B(2,0),圆内动点P满足|PA|•|PB|=|PO|2,求
PA
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系下,已知A(2,0),B(0,2),C(cos2x,sin2x),(0<x<
π
2
),f(x)=
AB
AC

(Ⅰ)求f(x)的表达式;
(Ⅱ)求f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,0),B(0,1)为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上的两点,P(x,y)为椭圆C上的动点,O为坐标原点.
( I)求椭圆C的方程;
( II)将|OP|表示为x的函数,并求|OP|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=(2,0),b=(
12
,-2),则a•b=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,0)、B(2,0),且△ABC的周长等于10,则顶点C的轨迹方程为
x2
9
+
y2
5
=1  (y≠0)
x2
9
+
y2
5
=1  (y≠0)

查看答案和解析>>

同步练习册答案