精英家教网 > 高中数学 > 题目详情
20.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,直线y=k(x-1)(k≠0)经过E的长轴的一个四等分点,且与E交于P,Q两点.
(Ⅰ)求E的方程;
(Ⅱ)记线段PQ为直径的圆为⊙M,判断点A(2,0)与⊙M的位置关系,说明理由.

分析 (Ⅰ)由题意可知,2c=2$\sqrt{3}$,2a=4,b2=a2-c2,即可求得a和b的值,写出椭圆的方程;
(Ⅱ)将直线方程代入椭圆方程,求得关于x的一元二次方程,利用根与系数的关系求得x1+x2和x1•x2,并代入直线方程求得y1•y2,表示出$\overrightarrow{AP}$和$\overrightarrow{AQ}$,利用向量数量积的坐标表示求得$\overrightarrow{AP}$•$\overrightarrow{AQ}$>0,因此点A在⊙M外.

解答 解:(Ⅰ)依题意得,2c=2$\sqrt{3}$,2a=4,即c=$\sqrt{3}$,a=$\sqrt{3}$,(2分)
∴b2=a2-c2=1,(3分)
所以E的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.(4分)
(Ⅱ)点A在⊙M外.理由如下:(5分)
设P(x1,y1),Q(x2,y2),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$得(1+4k2)x2-8k2x+4k2-4=0,(6分)
所以,△=(-8k22-4(1+4k2)(4k2-4)=48k2+16>0,
所以x1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$.(8分)
因为$\overrightarrow{AP}$=(x1-2,y1),$\overrightarrow{AQ}$=(x2-2,y2),
所以$\overrightarrow{AP}$•$\overrightarrow{AQ}$=(x1-2)(x2-2)+y1•y2
=(1+k2)x1•x2-(2+k2)(x1+x2)+4+k2
=$\frac{4({k}^{2}+1)({k}^{2}-1)}{1+4{k}^{2}}$-$\frac{8{k}^{2}(2+{k}^{2})}{1+4{k}^{2}}$+4+k2,(10分)
=$\frac{{k}^{2}}{1+4{k}^{2}}$.
因为k≠0,
所以$\overrightarrow{AP}$•$\overrightarrow{AQ}$>0.
∴cos∠PAQ>0,
∴∠PAQ为锐角,
所以点A在⊙M外.(12分)

点评 本题考查椭圆的标准方程及椭圆的基本性质,点与圆、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、化归与转化思想等,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知圆O:x2+y2=1及以下3个函数:①f(x)=xcosx;②f(x)=tanx;③f(x)=xsinx.其中图象能等分圆O面积的函数有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示的程序框图输出的结果是S=5040,则判断框内应填的条件是(  )
A.i≤7B.i>7C.i≤6D.i>6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α为参数),M是C1上的动点,点P满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,点P的轨迹为曲线C2
(1)在以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C2的极坐标方程;
(2)在(1)的极坐标系中,射线θ=$\frac{π}{3}$与C1异于极点的交点为A,与C2异于极点的交点为B,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某疾病研究所想知道吸烟与患肺病是否有关,于是随机抽取1000名成年人调查是否吸烟是否患有肺病,得到2×2列联表,经计算的K2=5.231.已知在假设吸烟与患肺病无关的前提条件下,P(K2≥3.841)=0.05,P(K2≥6.635)=0.01,则该研究所可以(  )
A.有95%以上的把握认为“吸烟与患肺病有关”
B.有95%以上的把握认为“吸烟与患肺病无关”
C.有99%以上的把握认为“吸烟与患肺病有关”
D.有99%以上的把握认为“吸烟与患肺病无关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l:y=k(x-2)与抛物线C:y2=8x交于A,B两点,点M(-2,4)满足$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,则|AB|=(  )
A.6B.8C.10D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列方程的解集:
(1)sin5x=sin7x;
(2)cos(x-$\frac{π}{4}$)=cos2x;
(3)sin2x=cos3x;
(4)tan3x•tan(x+$\frac{π}{4}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个多面体的三视图如图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该多面体的表面积为(  )
A.2B.4+2$\sqrt{2}$C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x<3}\\{\frac{1}{3}{x}^{2}-\frac{10}{3}x+8,x≥3}\end{array}\right.$,若存在实数a、b、c、d满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则abcd的取值范围是(21,24),a+b+c+d的取值范围是(12,$\frac{40}{3}$).

查看答案和解析>>

同步练习册答案