精英家教网 > 高中数学 > 题目详情
如果椭圆C和双曲线C′具有相同的焦点,且它们的离心率互为倒数,则称椭圆C是双曲线C′的“伴生”椭圆,据此,焦点在x轴上,以y=±x为渐近线,且焦点到渐近线距离为1的双曲线的“伴生”椭圆的方程是______.
由题意双曲线的焦点在x轴上,可设焦点为(±c,0),又y=±x为渐近线,且焦点到渐近线距离为1
∴a=b且1=
c
2
,解得c=
2

∴a=b=1,故此双曲线的离心率为
c
a
=
2

由定义知,其对应的椭圆的离心率为
2
2

又椭圆的焦点(±
2
,0),可得a′=2,从而b′=
2

故椭圆的标准方程为
x2
4
+
y2
2
=1

故答案为
x2
4
+
y2
2
=1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点B(6,0)和C(-6,0),设点A与B、C的连线AB、AC的斜率分别为k1,k2,如果k1k2=
1
m
,那么点A的轨迹一定不是下列曲线(或其一部分)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果椭圆C和双曲线C′具有相同的焦点,且它们的离心率互为倒数,则称椭圆C是双曲线C′的“伴生”椭圆,据此,焦点在x轴上,以y=±x为渐近线,且焦点到渐近线距离为1的双曲线的“伴生”椭圆的方程是
x2
4
+
y2
2
=1
x2
4
+
y2
2
=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如果椭圆C和双曲线C′具有相同的焦点,且它们的离心率互为倒数,则称椭圆C是双曲线C′的“伴生”椭圆,据此,焦点在x轴上,以y=±x为渐近线,且焦点到渐近线距离为1的双曲线的“伴生”椭圆的方程是________.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省泉州市德化一中高二(下)期末数学试卷(解析版) 题型:填空题

如果椭圆C和双曲线C′具有相同的焦点,且它们的离心率互为倒数,则称椭圆C是双曲线C′的“伴生”椭圆,据此,焦点在x轴上,以y=±x为渐近线,且焦点到渐近线距离为1的双曲线的“伴生”椭圆的方程是   

查看答案和解析>>

同步练习册答案