【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线的参数方程为(其中为参数),以原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线、的极坐标方程;
(2)射线:与曲线,分别交于点,(且点,均异于原点),当时,求的最小值.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P—ABC中,△PAC为等腰直角三角形,为正三角形,D为A的中点,AC=2.
(1)证明:PB⊥AC;
(2)若三棱锥的体积为,求二面角A—PC—B的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,满足:.
(1)若,求数列的通项公式;
(2)若,且.
① 记,求证:数列为等差数列;
② 若数列中任意一项的值均未在该数列中重复出现无数次,求首项应满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节来临之际,某超市为了确定此次春节年货的进货方案,统计去年春节前后50天年货的日销售量(单位:kg),得到如图所示的频率分布直方图.
(1)求这50天超市日销售量的平均数;(视频率为概率,以各组区间的中点值代表该组的值)
(2)先从日销售在,,内的天数中,按分层抽样随机抽取4天进行比较研究,再从中选2天,求这2天的日销售量都在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点,分别是椭圆:的左、右焦点,且椭圆上的点到点的距离的最小值为.点M、N是椭圆上位于轴上方的两点,且向量与向量平行.
(1)求椭圆的方程;
(2)当时,求△的面积;
(3)当时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,对于任意满足,且,数列满足,,其前项和为.
(1)求数列、的通项公式;
(2)令,数列的前项和为,求证:对于任意正整数,都有;
(3)将数列、的项按照“当为奇数时,放在前面”,“当为偶数时,放在前面”的要求进行“交叉排列”得到一个新的数列:、、、、、、、、求这个新数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若关于的不等式在上恒成立,求的取值范围;
(Ⅱ)设函数,在(Ⅰ)的条件下,试判断在上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】华东师大二附中乐东黄流中学位于我国南海边,有一片美丽的沙滩和一弯天然的海滨浴场.如图,海岸线MAN,,(海岸线MAN上方是大海),现用长为BC的栏网围成一个三角形学生游泳场所,其中.
(1)若,求三角形游泳场所面积最大值;
(2)若BC=600,,由于学生人数的增加需要扩大游泳场所面积,现在折线MBCN上方选点D,现用长为BD,DC的栏围成一个四边形游泳场所DBAC,使,求四边形游泳场所DBAC的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com