(本题满分14分)已知椭圆经过点,为坐标原点,平行于的直线在轴上的截距为.
(1)当时,判断直线与椭圆的位置关系(写出结论,不需证明);
(2)当时,为椭圆上的动点,求点到直线 距离的最小值;
(3)如图,当交椭圆于、两个不同点时,求证:直线、与轴始终围成一个等腰三角形.
解:(1)当时,直线与椭圆相离. ……2分
(2)可知直线的斜率为
设直线与直线平行,且直线与椭圆相切,
设直线的方程为 --------------------------------- 3分
联立,得 --------------------------------- 4分
,解得 --------------------------------- 5分
直线的方程为.
所求点到直线的最小距离等于直线到直线的距离
. ------------------------------ 7分
(3)由
若点与关于x轴对称,则,
此时直线:.
由上题知,直线与椭圆相切,不合题意.
故设直线、的斜率分别为,,
只需证明+即可.
设,
, -----------------------------9分
而 ----------- 10分
----------- 12分
∴+
直线、与轴始终围成一个等腰三角形 ---------------------------------------14分
【解析】略
科目:高中数学 来源:2012-2013学年吉林省高三第一次月考文科数学试卷(解析版) 题型:解答题
(本题满分14分)已知函数
(1)若,求x的值;
(2)若对于恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题
(本题满分14分)
已知椭圆:的离心率为,过坐标原点且斜率为的直线与相交于、,.
⑴求、的值;
⑵若动圆与椭圆和直线都没有公共点,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题
((本题满分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,
求的最大值;
(3)当取得最大值时,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com