精英家教网 > 高中数学 > 题目详情
14.已知命题p:y=loga(2-ax)在[0,1]上是减函数;命题$q:y=lg(a{x^2}-x+\frac{a}{12})$的值域是R,若命题“p且q”是假命题,“p或q”是真命题,求实数a的取值范围.

分析 先求出命题p,q为真命题的等价条件,然后利用“p且q”是假命题,“p或q”是真命题,确定实数a的取值范围.

解答 解:∵y=loga(2-ax)在区间[0,1]上为减函数,∴a>1.
又∵2-ax>0在[0,1]上恒成立,
2-a>0,即a<2,
∴1<a<2.
$y=lg(a{x}^{2}-x+\frac{a}{12})$的值域是R,
∴$a{x}^{2}-x+\frac{a}{12}$的值域为(0,+∞);
①若a=0,-x的值域可以为(0,+∞);
②若a≠0,则$\left\{\begin{array}{l}{a>0}\\{△≥0}\end{array}\right.$,
解得0<a$≤\sqrt{3}$.
∴a的取值范围是:0≤a$≤\sqrt{3}$.
由题意可知p真:1<a<2;q真:0≤a$≤\sqrt{3}$.
∵“p且q”是假命题,“p或q”是真命题
∴p、q一真一假.
当p真q假时$\sqrt{3}<a<2$,当p假q真时0≤a≤1.
综上,a的取值范围是$({\sqrt{3},2})$∪[0,1].

点评 本题主要考查复合命题的真假判断以及应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,内角A,B,C所对的边分别为a,b,c,$\sqrt{3}$sinB-cosB=1,a=2.
(1)求角B的大小;
(2)若b2=ac,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知z是纯虚数,且(2+i)z=1+ai3(i是虚数单位,a∈R),则|a+z|=(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合M={x|x<0,x∈R},N={x|x2+x-2=0,x∈R},则M∩N=(  )
A.ϕB.{-2}C.{1}D.{-2,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.动点P到直线x+5=0的距离减去它到M(2,0)的距离的差等于3,则点P的轨迹是(  )
A.直线B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,则sinα+cosα等于(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点到右顶点的距离为2,左焦点为F(-$\sqrt{2}$,0),过点D(0,3)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程及k的取值范围;
(2)在y轴上是否存在定点E,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒为定值?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A=$\{x|{(\frac{1}{2})^x}<1\}$,B={x|lgx>0}则A∪B等于(  )
A.{x|x>0}B.{x|x>1}C.RD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:已知函数f(x)的定义域为R,若f(x)是奇函数,则f(0)=0,则它的原命题,逆命题、否命题、逆命题中,真命题的个数为(  )
A.0B.2C.3D.4

查看答案和解析>>

同步练习册答案